下载此文档

人教第01讲 椭圆(讲)-2023年高考数学一轮复习讲练测(全国通用)(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载9页91 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第01讲 椭圆(讲)-2023年高考数学一轮复习讲练测(全国通用)(解析版).docx
文档介绍:
第01讲 椭圆
本讲为高考命题热点,分值22-27分,题型多变,选择题,填空题,解答题都会出现,
选择填空题常考圆锥曲线椭圆双曲线的离心率,几何关系等问题,大题题型多变,但多以最值,定值,范围,存在性问题,考察逻辑推理能力与运算求解能力.
高频考点一 椭圆的定义及其应用
【例1】(1)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆M在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为(  )
A.-=1        B.+=1
C.-=1 D.+=1
(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且⊥.若△PF1F2的面积为9,则b=__________.
[答案] (1)D (2)3
[解析] (1)设圆M的半径为r,
则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,
所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,
故所求的轨迹方程为+=1.
(2)设|PF1|=r1,|PF2|=r2,则
∴2r1r2=(r1+r2)2-(r+r)=4a2-4c2=4b2,
∴S△PF1F2=r1r2=b2=9,∴b=3.
【方法技巧】
椭圆定义的应用技巧
椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|
PF1|·|PF2|,通过整体代入可求其面积等.
【跟踪训练】
1.设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为(  )
A. B.
C. D.
【答案】D
【解析】如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可得PF2⊥x轴,|PF2|==,|PF1|=2a-|PF2|=,=,故选D.
2.已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点,则|PA|+|PF|的最大值为________,最小值为________.
【答案】6+ 6-
【解析】椭圆方程化为+=1,
设F1是椭圆的右焦点,则F1(2,0),
∴|AF1|=,∴|PA|+|PF|=|PA|-|PF1|+6,
又-|AF1|≤|PA|-|PF1|≤|AF1|(当P,A,F1共线时等号成立),
∴6-≤|PA|+|PF|≤6+.
3.(一题多解)(2019·全国卷Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.
【答案】(3,)
【解析】法一:不妨设F1,F2分别是椭圆C的左、右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程+=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,|F2M|=4.设M(x0,y0)(x0>0,y0>0),

解得x0=3,y0=,即M(3,).
法二:依题意得|F1F2|=|F1M|=8,|F2M|=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档