下载此文档

人教第02讲 空间点、直线、平面之间的位置关系(讲)(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载10页229 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第02讲 空间点、直线、平面之间的位置关系(讲)(解析版).docx
文档介绍:
第02讲 空间点、直线、平面之间的位置关系
本讲为高考命题热点,通常以选择题出现,但出现频次较少,往往与其他知识点结合,考察空间想象能力与逻辑推理能力.
考点一 平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
(2)公理2:过不在同一条直线上的三点,有且只有一个平面.
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
考点二 空间点、直线、平面的位置关系
直线与直线
直线与平面
平面与平面
平行关系
图形
语言
符号
语言
a∥b
a∥α
α∥β
相交关系
图形
语言
符号
语言
a∩b=A
a∩α=A
α∩β=l
独有关系
图形
语言
符号
语言
a,b是异面直线
a⊂α
考点三 平行公理与等角定理
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
考点四 异面直线所成的角
(1)定义:设a,b是两条异面直线,经过空间任意一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:.
考点五 常用结论
1.公理2的三个推论
推论1:经过一条直线和这条直线外一点有且只有一个平面;
推论2:经过两条相交直线有且只有一个平面;
推论3:经过两条平行直线有且只有一个平面.
2.异面直线的判定:经过平面内一点和平面外一点的直线与平面内不经过该点的直线互为异面直线.
3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.
高频考点一 平面的基本性质及应用
【例1】(1)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是(  )
答案 D
解析 对于A,PS∥QR,故P,Q,R,S四点共面;同理,B,C图中四点也共面;D中四点不共面.
(2)如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是(  )
A.直线AC     B.直线AB
C.直线CD     D.直线BC
答案 C
解析 由题意知,D∈l,l⊂β,所以D∈β,
又因为D∈AB,所以D∈平面ABC,
所以点D在平面ABC与平面β的交线上.
又因为C∈平面ABC,C∈β,
所以点C在平面β与平面ABC的交线上,
所以平面ABC∩平面β=CD.
(3)在三棱锥A-BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF∩HG=P,则点P(  )
A.一定在直线BD上
B.一定在直线AC上
C.在直线AC或BD上
D.不在直线AC上,也不在直线BD上
答案 B
解析 如图所示,
因为EF⊂平面ABC,
HG⊂平面ACD,EF∩HG=P,
所以P∈平面ABC,P∈平面ACD.
又因为平面ABC∩平面ACD=AC,所以P∈AC.
【方法技巧】
1.证明点或线共面问题的两种方法:(1)首
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档