下载此文档

人教第25节 直线、平面垂直的判定与性质(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载33页2.47 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第25节 直线、平面垂直的判定与性质(解析版).docx
文档介绍:
第25节 直线、平面垂直的判定与性质
基础知识要夯实
1.直线与平面垂直
(1)判定直线和平面垂直的方法
①定义法.
②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.
③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直这个
平面.
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内任意直线.
②垂直于同一个平面的两条直线平行.
③垂直于同一条直线的两平面平行.
文字语言
图形表示
符号表示
判定定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
⇒l⊥α
性质定理
两直线垂直于同一个平面,那么这两条直线平行
⇒a∥b
2.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法.
②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.
(2)平面与平面垂直的性质
两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.
[难点正本 疑点清源]
1.两个平面垂直的性质定理
两个平面垂直的性质定理,即如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面是作点到平面距离的依据,要过平面外一点P作平面的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β∩α=l,在β内作直线a⊥l,则a⊥α.
2.两平面垂直的判定
(1)两个平面所成的二面角是直角;
(2)一个平面经过另一平面的垂线.
基本技能要落实
考点一 线面垂直的判定与性质
【例1】(2020·全国Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.
(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.
【解析】(1)证明 因为AP=CP=AC=4,O为AC的中点,
所以OP⊥AC,且OP=2.
连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.
由OP2+OB2=PB2知,OP⊥OB.
由OP⊥OB,OP⊥AC且OB∩AC=O,知PO⊥平面ABC.
(2)解 作CH⊥OM,垂足为H.
又由(1)可得OP⊥CH,所以CH⊥平面POM.
故CH的长为点C到平面POM的距离.
由题设可知OC=AC=2,CM=BC=,∠ACB=45°.
所以OM=,CH=.
所以点C到平面POM的距离为.
【方法技巧】1.证明直线和平面垂直的常用方法有:
(1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质(
α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α).
2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
【跟踪训练】
1. 如图,等腰梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式中成立的是(  )
A. B. C. D.
【答案】D
【解析】根据相等向量的定义,分析可得与不平行,与不平行,所以,均错误.与平行,但方向相反也不相等,只有与方向相同,且大小都等于线段EF长度的一半,所以.故选:D
2. (2020·南宁二中、柳州高中联考)如图,三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(1)求证:BC1⊥平面ABC;
(2)E是棱CC1上的一点,若三棱锥E-ABC的体积为,求线段CE的长.
【解析】(1)证明 ∵AB⊥平面BB1C1C,BC1⊂平面BB1C1C,
∴AB⊥BC1,
在△CBC1中,BC=1,CC1=BB1=2,∠BCC1=60°,
由余弦定理得BC=BC2+CC-2BC·CC1·cos∠BCC1=12+22-2×1×2cos 60°=3,∴BC1=,
∴BC2+BC=CC,∴BC⊥BC1,
又AB,BC⊂平面ABC,BC∩AB=B,∴BC1⊥平面ABC.
(2)解 ∵AB⊥平面BB1C1C,∴VE-ABC=VA-EBC=S△BCE·AB=S△BCE·1=,
∴S△BCE==CE·BC·sin∠BCE=CE·,∴CE=1.
考点二 面面垂直的判定与性质
【例2】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档