下载此文档

人教版高中数学第2讲 命题及其关系、充分条件与必要条件.docx


高中 高一 上学期 数学 人教版

1340阅读234下载5页60 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第2讲 命题及其关系、充分条件与必要条件.docx
文档介绍:
第2讲 命题及其关系、充分条件与必要条件
一、选择题
1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是(  )
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
解析 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.
答案 D
2.“x=1”是“x2-2x+1=0”的(  )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析 因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.
答案 A
3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(  )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 m⊂α,m∥βα∥β,但m⊂α,α∥β⇒m∥β,∴“m∥β”是“α∥β”的必要不充分条件.
答案 B
4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-+a为奇函数”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 显然a=0时,f(x)=sin x-为奇函数;当f(x)为奇函数时,f(-x)+f(x)=0.又
f(-x)+f(x)=sin(-x)-+a+sin x-+a=0.
因此2a=0,故a=0.
所以“a=0”是“函数f(x)为奇函数”的充要条件.
答案 C
5.下列结论错误的是(  )
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”
B.“x=4”是“x2-3x-4=0”的充分条件
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”
解析 C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,
即m≥-,不能推出m>0.所以不是真命题.
答案 C
6.设x∈R,则“1<x<2”是“|x-2|<1”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由|x-2|<1,得1<x<3,所以1<x<2⇒1<x<3;但1<x<3 1<x<2.
所以“1<x<2”是“|x-2|<1”的充分不必要条件.
答案 A
7.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是(  )
A.[1,+∞) B.(-∞,1]
C.[-1,+∞) D.(-∞,-3]
解析 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.
答案 A
8.(2017·佛山模拟)已知a,b都是实数,那
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档