下载此文档

人教版高中数学第4章 §4.5 三角函数的图象与性质.docx


高中 高一 上学期 数学 人教版

1340阅读234下载22页431 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第4章 §4.5 三角函数的图象与性质.docx
文档介绍:
§4.5 三角函数的图象与性质
考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在上的性质.
知识梳理
1.用“五点法”作正弦函数和余弦函数的简图
(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),,(π,0),,(2π,0).
(2)在余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),,(π,-1),,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
值域
[-1,1]
[-1,1]
R
周期性


π
奇偶性
奇函数
偶函数
奇函数
递增区间
[2kπ-π,2kπ]
递减区间
[2kπ,2kπ+π]
对称中心
(kπ,0)
对称轴方程
x=kπ+
x=kπ
常用结论
1.对称性与周期性
(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是个周期,相邻的对称中心与对称轴之间的距离是个周期.
(2)正切曲线相邻两对称中心之间的距离是半个周期.
2.奇偶性
若f(x)=Asin(ωx+φ)(A,ω≠0),则
(1)f(x)为偶函数的充要条件是φ=+kπ(k∈Z).
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)正切函数y=tan x在定义域内是增函数.( × )
(2)已知y=ksin x+1,x∈R,则y的最大值为k+1.( × )
(3)y=sin|x|是偶函数.( √ )
(4)若非零实数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周期.( √ )
教材改编题
1.若函数y=2sin 2x-1的最小正周期为T,最大值为A,则(  )
A.T=π,A=1 B.T=2π,A=1
C.T=π,A=2 D.T=2π,A=2
答案 A
2.函数f(x)=-2tan的定义域是(  )
A.
B.
C.
D.
答案 D
解析 由2x+≠kπ+,k∈Z,
得x≠+,k∈Z.
3.函数y=3cos的单调递减区间是________.
答案 ,k∈Z
解析 因为y=3cos,
令2kπ≤2x-≤2kπ+π,k∈Z,
求得kπ+≤x≤kπ+,k∈Z,
可得函数的单调递减区间为,k∈Z.
题型一 三角函数的定义域和值域
例1 (1)函数y=的定义域为________.
答案 
解析 要使函数有意义,


故函数的定义域为.
(2)函数y=sin x-cos x+sin xcos x的值域为________.
答案 
解析 设t=sin x-cos x,则t2=sin2x+cos2x-2sin x·cos x,sin xcos x=,
且-≤t≤.
∴y=-+t+=-(t-1)2+1,
t∈[-,].
当t=1时,ymax=1;
当t=-时,ymin=-.
∴函数的值域为.
教师备选
1.函数y=的定义域为________.
答案 (k∈Z)
解析 要使函数有意义,必须使sin x-cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,
如图所示.
在[0,2π]内,满足sin x=cos x的x为,,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为.
2.函数f(x)=sin2x+cos x-的最大值是________.
答案 1
解析 由题意可得
f(x)=-cos2x+cos x+
=-2+1.
∵x∈,
∴cos x∈[0,1].
∴当cos x=,即x=时,f(x)取最大值为1.
思维升华 (1)三角函数定义域的求法
求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解.
(2)三角函数值域的不同求法
①把所给的三角函数式变换成y=Asin(ωx+φ)的形式求值域.
②把sin x或cos x看作一个整体,转换成二次函数求值域.
③利用sin x±cos x和sin xcos x的关系转换成二次函数求值域.
跟踪训练1 (1)(2021·北京)函数f(x)=cos x-cos 2x,试判断函数的奇偶性及最大值(  )
A.奇函数,最大值为2 B.偶函数,最大值为2
C.奇函数,最大值
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档