下载此文档

人教高中数学第19讲 不等式的证明(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载42页3.87 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第19讲 不等式的证明(解析版).docx
文档介绍:
第19讲 不等式的证明
高考预测一:一元不等式的证明
1.证明:
(1);
(2).
【解析】证明:(1)令,
则,
,,
在时单调递减,
成立,

,等号成立;
,,
即,
在时单调递增,
成立,

令,则它的导数为.
当时,,故函数在上是减函数.
当时,,当且仅当时,,故函数在,上是增函数.
故当时,函数取得最小值为0,
故有,.

(2)设,则,
当时,,.
当时,,
在上是增函数,

当时,,
在上是减函数,

对都有,

2.设函数在处取得极值.
(1)求的值及函数的单调区间;
(2)证明对任意的正整数,不等式.
【解析】(1)解:,

在处取得极值,
,,
故,
当,即时,,
当,即时,,
的增区间为,减区间为.
(2)证明:当时,左边,右边,成立;
当时,左边,右边,成立;
当时,原不等式等价于,
令,,
则,
当时,,,

从而,递减,
所以,当时,
有,
即,
综上所述:对任意的正整数,不等式都成立.
3.设函数,其中
(1)若,求在,的极小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)证明不等式:
【解析】解:(1)由题意知,的定义域为
时,由,得舍去),
当,时,当,时,,
所以当,时,单调递减;当,时,单调递增,
所以(2)
(2)由题意在有两个不等实根,
即在有两个不等实根,
设,则,解之得
(3)当时,.令,
则在,上恒正
在,上单调递增,
当时,恒有
即当时,有,
即.
4.当时,求证:.
【解析】证明:令,则,
,.
当时,,即.
所以在上单调递减.
所以,属.
所以在上单调递减.
所以,.
即,.
高考预测二:函数不等式证明中的变形原理
5.已知函数.
讨论函数的单调性;
若在点,(1)处的切线斜率为.
求的解析式;
求证:当.
【解析】解:由题意可得,定义域为
对函数求导可得,
①时,,
由可得,,由可得
在单调递增,在,单调递减
②时,令可得或
当时
由可得,由可得
故在单调递减,在,单调递增
当时,同理可得在单调递减,在,单调递增
当时,
在增(6分)
解:由知)知
.(8分)
证明:

故当时,,在单调递增,
(1),又
当时,,在单调递增,(1)
又,
综上所述,且时,(14分)
6.已知函数
求曲线在,(1)处的切线方程;
(Ⅱ)若,求的取值范围;
(Ⅲ)证明:.
【解析】解:
所以(1),所以切线方程
(Ⅱ),
即:,,则有,
即要使成立.
令,那么,
可知当时单调增,当时单调减.
故在处取最大值为,
那么要使得成立,则有.
(Ⅲ)由(Ⅱ)可得:,即
当时,,
当时,

综上所述,
7.已知函数,曲线在点,(1)处的切线方程为.
(1)求,的值;
(2)如果当时,,求的取值范围.
【解析】解:切线方程为即,
(1)由于直线的斜率为,且过点,
故,即,解得,.
(2)由(1)知,所以

考虑函数,则

设,由知,
当时,,可得,
从而当时,,
设.由于当,时,,故,
而(1),故当时,,可得,与题设矛盾.
设.此时,而(1),
故当时,,可得,与题设矛盾.
综合得,的取值范围为,.
8.已知函数,是自然对数的底数).
(1)求的单调区间;
(2)设,其中为的导函数.证明:对任意,.
【解析】解:(1)求导数得,,
令,,
当时,;当时,.
又,
所以时,;
时,.
因此的单调递增区间为,单调递减区间为.
证明:(2)因为.
所以,.
由,
求导得,
所以当时,,函数单调递增;
当,时,,函数单调递减.
所以当时,.
又当时,,
所以当时,,即.
综上所述,对任意,
9.已知函数,.,且为常数,为自然对数的底数).
(1)讨论函数的极值点的个数;
(2)当时,对任意的恒成立,求实数的取值范围.
【解析】解:(1)函数的你定义域为,,

在区间上单调递增,且,
①当时,在区间上恒成立,即,
函数在上单调递增,此时无极值点;
②当时,方程有唯一解,设为,
当时,,函数单调递减,当时,,函数单调递增,
是函数的极小值点,即函数只有一个极值点;
综上,当时,无极
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档