下载此文档

人教高中数学第二节 第3课时 手握方法巧破障——破解“函数与导数”问题常用到的4种方法 教案.doc


高中 高一 上学期 数学 人教版

1340阅读234下载20页296 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第二节 第3课时 手握方法巧破障——破解“函数与导数”问题常用到的4种方法 教案.doc
文档介绍:
第3课时 手握方法巧破障——破解“函数与导数”问题常用到的4种方法
方法一 构造函数法解决抽象不等式问题
以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.
类型(一) 构造y=f(x)±g(x)型可导函数
[例1] 设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有(  )
A.f(x)+sin x≥f(0)    B.f(x)+sin x≤f(0)
C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)
[解析] 观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减, F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.
[答案] A
[方法技巧]
当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.  
类型(二) 构造f(x)·g(x)型可导函数
[例2] 设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是(  )
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)
[解析] 利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以 F(-3)=-F(3)=0,结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.
[答案] A
[方法技巧]
当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.  
类型(三) 构造型可导函数
[例3] (多选)(2021·聊城模拟)已知定义在上的函数f(x),f′(x)是f(x)的导函数,且恒有cos xf′(x)+sin xf(x)<0成立,则(  )
A.f>f B.f>f
C.f>f D.f>f
[解析] 根据题意,令g(x)=,x∈,则其导数g′(x)=,又由x∈,且恒有cos xf′(x)+sin xf(x)<0,则有g′(x)<0,即函数g(x)为减函数.由<,则有g>g,即>,分析可得f>f;又由<,则有g>g,即>,分析可得f>f.故选C、D.
[答案] CD
[方法技巧]
当题设条件中存在或通过变形出现特征式“f′(x)g(x)-f(x)g′(x)”时,可联想、逆用“=′”,构造可导函数y=,然后利用该函数的性质巧妙地解决问题.  
[归纳总结]
构造函数解决导数问题常用模型
(1)条件:f′(x)>a(a≠0):构造函数:h(x)=f(x)-ax.
(2)条件:f′(x)±g′(x)>0:构造函数:h(x)=f(x)±g(x).
(3)条件:f′(x)+f(x)>0:构造函数:h(x)=exf(x).
(4)条件:f′(x)-f(x)>0:构造函数:h(x)=.
(5)条件:xf′(x)+f(x)>0:构造函数:h(x)=xf(x).
(6)条件:xf′(x)-f(x)>0:构造函数:h(x)=.
[针对训练]
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档