下载此文档

人教高中数学第二课时 利用导数研究函数的零点.doc


高中 高一 上学期 数学 人教版

1340阅读234下载13页158 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第二课时 利用导数研究函数的零点.doc
文档介绍:
第二课时 利用导数研究函数的零点
 题型一 判断、证明或讨论零点的个数
例1 已知函数f(x)=xsin x-.
判断函数f(x)在(0,π)内的零点个数,并加以证明.
解 f(x)在(0,π)内有且只有两个零点.证明如下:
∵f′(x)=sin x+xcos x,当x∈时,f′(x)>0,
f(x)=xsin x-,从而有f(0)=-<0,f=>0,
又f(x)在上的图象是连续不间断的.
所以f(x)在内至少存在一个零点.
又f(x)在上单调递增,故f(x)在内有且只有一个零点.
当x∈时,令g(x)=f′(x)=sin x+xcos x.
由g=1>0,g(π)=-π<0,且g(x)在上的图象是连续不间断的,
故存在m∈,
使得g(m)=0.
由g′(x)=2cos x-xsin x,
知x∈时,有g′(x)<0,
从而g(x)在内单调递减.
当x∈时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在内单调递增,故当x∈
时,f(x)≥f=>0,故f(x)在上无零点;
当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(m,π)内单调递减.
又f(m)>0,f(π)<0,且f(x)在[m,π]上的图象是连续不断的,从而f(x)在(m,π)内有且仅有一个零点.
综上所述,f(x)在(0,π)内有且只有两个零点.
感悟提升 利用导数求函数的零点常用方法
(1)构造函数g(x),利用导数研究g(x)的性质,结合g(x)的图象,判断函数零点的个数.
(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有多少个零点.
训练1 已知函数f(x)=x3-a(x2+x+1).
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
(1)解 当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.
令f′(x)=0,解得x=3-2或x=3+2.
当x∈(-∞,3-2)∪(3+2,+∞)时,f′(x)>0;
当x∈(3-2,3+2)时,f′(x)<0.
故f(x)在(-∞,3-2),(3+2,+∞)单调递增,在(3-2,3+2)单调递减.
(2)证明 由于x2+x+1>0,所以f(x)=0等价于-3a=0.
设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)单调递增.
故g(x)至多有一个零点,从而f(x)至多有一个零点.
又f(3a-1)=-6a2+2a-
=-6-<0,
f(3a+1)=>0,故f(x)有一个零点.
综上,f(x)只有一个零点.
 题型二 根据零点情况求参数范围
例2 已知函数f(x)=2ln x-x2+ax(a∈R).
(1)当a=2时,求f(x)的图象在x=1处的切线方程;
(2)若函数g(x)=f(x)-ax+m在上有两个零点,求实数m的取值范围.
解 (1)当a=2时,f(x)=2ln x-x2+2x,
则f′(x)=-2x+2,切点坐标为(1,1),则切线的斜率k=f′(1)=2,则函数f(x)的图象在x=1处的切线方程为y-1=2(x-1),即y=2x-1.
(2)g(x)=f(x)-ax+m=2ln x-x2+m,
则g′(x)=-2x=,
∵x∈,
∴由g′(x)=0,得x=1.
当≤x<1时,g′(x)>0,函数g(x)单调递增,
当1<x≤e时,g′(x)<0,函数g(x)单调递减,
故当x=1时,函数g(x)取得极大值g(1)=m-1,
又g=m-2-,g(e)=m+2-e2,
且g>g(e),
∴g(x)=f(x)-ax+m在上有两个零点需满足条件
解得1<m≤2+.
故实数m的取值范围是.
感悟提升 1.函数零点个数可转化为两个函数图象的交点个数,根据图象的几何直观求解.
2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点判断函数的大致图象,进而求出参数的取值范围.也可分离出参数,转化为两函数图象的交点情况.
训练2 已知函数f(x)=ex+(a-e)x-ax2.
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.
解 (1)当a=0时,f(x)=ex-ex,
则f′(x)=ex-e,f′(1)=0,
当x<1时,f′(x)<0,f(x)单调递减;
当x>1时,f′(x)>0,f(x)单调递增,
所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.
(2)由题意得f′(x)=ex-2ax+a-e,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档