下载此文档

人教高中数学第六节 概率与统计的综合问题 教案.doc


高中 高一 上学期 数学 人教版

1340阅读234下载17页375 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第六节 概率与统计的综合问题 教案.doc
文档介绍:
第六节 概率与统计的综合问题
题型一 概率与频率分布直方图的交汇
[典例] (2021·西安一模)某超市每年10月份都销售某种桃子,在10月份的每天计划进货量都相同,进货成本为每千克16元,销售价为每千克24元;当天超出需求量的部分,以每千克10元全部卖出.根据往年销售经验,每天的需求量与当天最高气温(单位:℃)有一定关系:最高气温低于25 ℃,需求量为1 000千克;最高气温位于[25,30)内,需求量为2 000千克;最高气温不低于30 ℃,需求量为3 000千克.为了制订2020年10月份的订购计划,超市工作人员统计了近三年10月份的气温数据,得到如图所示的频率分布直方图.
以气温位于各区间的频率代替气温位于该区间的概率.
(1)求2020年10月份桃子一天的需求量X的分布列;
(2)设2020年10月份桃子一天的销售利润为Y元,当一天的进货量为多少千克时,E(Y)取到最大值?
[解] (1)由题意知X的可能取值为1 000,2 000,3 000,
P(X=1 000)=(0.008 9+0.031 1)×5=0.2,
P(X=2 000)=0.080 0×5=0.4,
P(X=3 000)=(0.046 7+0.033 3)×5=0.4.
所以X的分布列为
X
1 000
2 000
3 000
P
0.2
0.4
0.4
(2)设一天的进货量为n千克,则1 000≤n≤3 000.
①当1 000≤n<2 000时,
若最高气温不低于25 ℃,则Y=8n;
若最高气温低于25 ℃,则Y=1 000×8-(n-1 000)×6=14 000-6n.
此时E(Y)=0.8×8n+0.2×(14 000-6n)=5.2n+2 800<13 200.
②当2 000≤n≤3 000时,
若最高气温不低于30 ℃,则Y=8n;
若最高气温位于[25,30)内,则Y=2 000×8-(n-2 000)×6=28 000-6n;
若最高气温低于25 ℃,则Y=1 000×8-(n-1 000)×6=14 000-6n.
此时E(Y)=0.4×8n+0.4×(28 000-6n)+0.2×(14 000-6n)=14 000-0.4n≤13 200,当且仅当
n=2 000时取等号.
综上,当一天的进货量为2 000千克时,E(Y)取到最大值.
[方法技巧]
高考常将求概率与等可能事件、互斥事件、相互独立事件、超几何分布、二项分布等交汇在一起进行考查,因此在解答此类题时,准确把题中所涉及的事件进行分解,明确所求问题所属的事件类型是关键.特别是要注意挖掘题目中的隐含条件.  
[针对训练]
“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在(12,16]内的人数为92.
(1)求n的值;
(2)估计这些党员干部一周参与主题教育活动时间的平均值以及中位数(中位数的结果精确到0.01);
(3)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在(16,24]内的党员干部给予奖励,且参与时间在(16,20],(20,24]内的分别得二等奖和一等奖,从这些获奖人中随机抽取5人,求这5人中获得一等奖人数的分布列及期望.
解:(1)由已知可得,a=1÷4-(0.025 0+0.047 5+0.050 0+0.012 5)=0.115 0,
0.115 0×4×n=92,因而n==200.
(2)这些党员干部一周参加主题教育活动时间的平均值约为
(6×0.025 0+10×0.047 5+14×0.115 0+18×0.050 0+22×0.012 5)×4=13.64.
设中位数的估计值为x,则0.050 0×4+0.012 5×4+(16-x)×0.115 0=0.5,得x≈13.83.
(3)由频率分布直方图知,这些获奖人中参与主题教育活动的时间在(16,20]的概率为=,在(20,24]的概率为=,
设抽取的5人中获得一等奖的人数为ξ,则ξ的可能取值为0,1,2,3,4,5.
P(ξ=0)=C×0×5=,
P(ξ=1)=C×1×4=,
P(ξ=2)=C×2×3=,
P(ξ=3)=C×3×2=,
P(ξ=4)=C×4×1=,
P(ξ=5)=C×5×0=,
则ξ的分布列为
ξ
0
1
2
3
4
5
P
法一:E(ξ)=0×+1×+2×+3×+4×+5×=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档