下载此文档

人教高中数学解密06讲:函数图像、方程与零点(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载45页3.31 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密06讲:函数图像、方程与零点(解析版).docx
文档介绍:
解密06讲:函数图像、方程与零点
【考点解密】
1.利用描点法作函数图象的方法步骤
2.利用图象变换法作函数的图象
(1)平移变换
(2)伸缩变换
①y=f(x)y=f(ax).
②y=f(x)y=af(x).
(3)对称变换
①y=f(x)y=-f(x).
②y=f(x)y=f(-x).
③y=f(x)y=-f(-x).
④y=ax (a>0且a≠1)y=logax(a>0且a≠1).
(4)翻折变换
①y=f(x)y=|f(x)|.
②y=f(x)y=f(|x|).
3.函数的零点与方程的解
(1)函数零点的概念
对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.
(2)函数零点与方程实数解的关系
方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.
4.二分法
对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
【方法技巧】
1.图象变换法作函数的图象
(1)熟练掌握几种基本初等函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y=x+的函数.
(2)若函数图象可由某个基本初等函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.
(3)图像变换的翻折变换有两种:
图像保留x轴上方图像,将x轴下方图像翻折上去,得到的图像;
图像保留y轴右边图像,并将其关于y轴对称的图像画出,得到的图像.
(4)常见的平移变换原则“左加右减,上加下减”,对称变换有和关于轴对称,和关于轴对称,和关于原点轴对称等.
2.辨识函数图象的入手点
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.
(2)从函数的奇偶性,判断图象的对称性.
(3)从函数的特征点,排除不合要求的图象.
(4)从函数的单调性,判断图象的变化趋势.
(5)从函数的周期性,判断图象的循环往复.
3.函数零点个数的判定有下列几种方法
(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.
(2)零点存在定理:利用该定理不仅要求函数在[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.
(3)画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
4.已知函数有零点(方程有根)求参数值(取值范围)常用的方法:
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.
【核心题型】
题型一:函数图像的辨识
1.(2022·广东·深圳市福田区福田中学高三阶段练****函数在区间的图象大致为(     )
A. B.
C. D.
【答案】A
【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.
【详解】令,
则,
所以为奇函数,排除BD;
又当时,,所以,排除C.
故选:A.
2.(2021·陕西·韩城市新蕾中学(完全中学)高三阶段练****函数的图像大致为(     )
A. B.
C. D.
【答案】B
【分析】由函数为偶函数可排除AC,再由当时,,排除D,即可得解.
【详解】设,则函数的定义域为,关于原点对称,
又,所以函数为偶函数,排除AC;
当时, ,所以,排除D.
故选:B.
3.(2019·安徽·高三阶段练****文))函数的图象大致是( )
A. B.
C. D.
【答案】C
【分析】根据函数的解析式,根据定义在上的奇函数图像关于原点对称可以排除,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个选项即可得到结果
【详解】当时,
故函数图像过原点,排除
又,令
则可以有无数解,所以函数的极值点有很多个,故排除
故函数
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档