下载此文档

人教高中数学专题02 函数的概念与基本初等函数I(解析版).doc


高中 高一 上学期 数学 人教版

1340阅读234下载14页906 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题02 函数的概念与基本初等函数I(解析版).doc
文档介绍:
专题02 函数的概念与基本初等函数I
1.(2021·浙江高考真题)已知函数,则图象为如图的函数可能是( )
A. B.
C. D.
【答案】D
【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.
【解析】对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;
对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;
对于C,,则,
当时,,与图象不符,排除C.
故选:D.
2.(2021·全国高考真题(理))设函数的定义域为R,为奇函数,为偶函数,当时,.若,则( )
A. B. C. D.
【答案】D
【分析】通过是奇函数和是偶函数条件,可以确定出函数解析式,进而利用定义或周期性结论,即可得到答案.
【解析】因为是奇函数,所以①;
因为是偶函数,所以②.
令,由①得:,由②得:,
因为,所以,
令,由①得:,所以.
思路一:从定义入手.
所以.
思路二:从周期性入手
由两个对称性可知,函数的周期.
所以.
故选:D.
【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.
3.(2021·全国高考真题(理))设函数,则下列函数中为奇函数的是( )
A. B. C. D.
【答案】B
【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.
【解析】由题意可得,
对于A,不是奇函数;
对于B,是奇函数;
对于C,,定义域不关于原点对称,不是奇函数;
对于D,,定义域不关于原点对称,不是奇函数.
故选:B
【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.
4.(2021·全国高考真题(理))设,,.则( )
A. B. C. D.
【答案】B
【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.
【解析】,
所以;
下面比较与的大小关系.
记,则,,
由于
所以当0<x<2时,,即,,
所以在上单调递增,
所以,即,即;
令,则,,
由于,在x>0时,,
所以,即函数在[0,+∞)上单调递减,所以,即,即b<c;
综上,,
故选:B.
【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.
5.(2021·浙江高考真题)已知,函数若,则___________.
【答案】2
【分析】由题意结合函数的解析式得到关于的方程,解方程可得的值.
【解析】,故,
故答案为:2.
6.(2021·全国高考真题)已知函数是偶函数,则______.
【答案】1
【分析】利用偶函数的定义可求参数的值.
【解析】因为,故,
因为为偶函数,故,
时,整理得到,
故,
故答案为:1
1.(2021·新安县第一高级中学高三其他模拟(理))偶函数f(x)满足,当xÎ(0,4]时,,不等式在上有且只有200个整数解,则实数a的取值范围是( )
A. B.
C. D.
【答案】C
【分析】根据题意,得到的周期,利用导数可得的单调性,即可作出的图象,根据周期性、对称性可得在内有4个整数解,分别讨论、和三种情况下在一个周期内有整数解的个数,综合分析,即可得答案.
【解析】因为为偶函数,所以,
所以是周期函数,且周期为8,且关于x=4对称,
又当xÎ(0,4]时,,
则,
令,解得,
所以当时,,为增函数,
当时,,为减函数,
作出一个周期内图象,如图所示:
因为为偶函数,且不等式在上有且只有200个整数解,
所以不等式在内有100个整数解,
因为周期为8,所以在内有25个周期,
所以在一个周期内有4个整数解,
(1)若,由,可得或,
由图象可得有7个整数解,无整数解,不符合题意;
(2)若,则,由图象可得,不满足题意;
(3)若,由,可得 或,
由图象可得在一个周期内无整数解,不符合题意,
所以在一个周期内有4个整数解,
因为在内关于 x=4对称,
所以在内有2个整数解,
因为,
所以在的整数解为 x=1和x=2,
所以,解得.
故选:C
【点睛】解题的关键是熟练掌握函数的周期性、对称性的求法,利用导数求函数的单调区间等知识,并灵活
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档