下载此文档

人教考点15 利用导数研究函数的单调性(重点)-备战2022年高考数学一轮复习考点微专题.docx


高中 高一 上学期 数学 人教版

1340阅读234下载28页1.35 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考点15 利用导数研究函数的单调性(重点)-备战2022年高考数学一轮复习考点微专题.docx
文档介绍:
考向15 利用导数研究函数的单调性
1.(2014·全国高考真题(文))若函数在区间上单调递增,则实数的取值范围是
A. B. C. D.
【答案】D
【详解】
试题分析:,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是.故选D.
考点:利用导数研究函数的单调性.
2.(2021·全国高考真题(理))已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
【答案】(1)上单调递增;上单调递减;(2).
【分析】
(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;
(2)利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是
,然后根据的图象和单调性得到的取值范围.
【详解】
(1)当时,,
令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2),设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
【点睛】
本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.
1.求函数单调区间的步骤:
(1)确定函数f(x)的定义域.(2)求f′(x).(3)在定义域内解不等式f′(x)>0,得单调递增区间.(4)在定义域内解不等式
f′(x)<0,得单调递减区间.
[提醒] 求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.
2.解决含参数函数的单调性问题应注意的2点
(1)研究含参数函数的单调性,要依据参数对不等式解集的影响进行分类讨论.
(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.
3.利用导数比较大小或解不等式的常用技巧
利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.
4.利用函数的单调性求参数的取值范围的解题思路
①由函数在区间[a,b]上单调递增(减)可知f′(x)≥0(f′(x)≤0)在区间[a,b]上恒成立列出不等式;
②利用分离参数法或函数的性质求解恒成立问题;
③对等号单独检验,检验参数的取值能否使f′(x)在整个区间恒等于0,若f′(x)恒等于0,则参数的这个值应舍去;若只有在个别点处有f′(x)=0,则参数可取这个值.
[提醒] f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任意一个非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解.
函数的导数与单调性的关系
函数y=f(x)在某个区间内可导,则
(1)若f′(x)>0,则f(x)在这个区间内单调递增。
(2)若f′(x)<0,则f(x)在这个区间内单调递减。
(3)若f′(x)=0,则f(x)在这个区间内是常数函数。
【知识拓展】

1.(2021·辽宁实验中学高三其他模拟)已知,则“”是“在内单调递增”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.(2021·陕西西安市·西安中学高三其他模拟(理))已知定义在(0,+∞)上的函数满足,则下列不等式一定正确的是( )
A. B.
C. D.
3.(2021·全国高三其他模拟)设函数是函数的导函数,已知,且,,,则使得成立的的取值范围是( )
A. B. C. D.
4.(2021·福建厦门市·高三二模)(多选题)达芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为,双曲余弦函数则以下正确的是( )
A.是奇函数 B.在上单调递减
C., D.,
1.(2021·合肥市第六中学高三其他模拟(文))已知实数,,满足,则,,的大小关系为( )
A. B.
C. D.
2.(2021·辽宁实验中学高三其他模拟)已知实数,,满足且,若,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档