下载此文档

人教考向25 平面向量的数量积及其应用(重点)-备战2022年高考数学一轮复习考点微专题.doc


高中 高一 上学期 数学 人教版

1340阅读234下载22页2.76 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向25 平面向量的数量积及其应用(重点)-备战2022年高考数学一轮复习考点微专题.doc
文档介绍:
考向25 平面向量的数量积及其应用
1.(2021·全国高考真题)已知向量,,,_______.
【答案】
【分析】
由已知可得,展开化简后可得结果.
【详解】
由已知可得,
因此,.
故答案为:.
2.(2021·天津高考真题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为____________;的最小值为____________.
【答案】1
【分析】
设,由可求出;将化为关于的关系式即可求出最值.
【详解】
设,,为边长为1的等边三角形,,

,为边长为的等边三角形,,



所以当时,的最小值为.
故答案为:1;.

1.平面向量数量积的类型及求法:
(1)平面向量数量积有两种计算公式:一是夹角公式;二是坐标公式.
(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.
2.平面向量数量积主要有两个应用:
(1)求夹角的大小:若a,b为非零向量,则由平面向量的数量积公式得(夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.
(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.
3.向量与平面几何综合问题的解法与步骤:
(1)向量与平面几何综合问题的解法
①坐标法
把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.
②基向量法
适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.
【注】用坐标法解题时,建立适当的坐标系是解题的关键,用基向量解题时要选择适当的基底.
(2)用向量解决平面几何问题的步骤
①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
②通过向量运算研究几何元素之间的关系,如距离、夹角等问题;
③把运算结果“翻译”成几何关系.
4.利用向量求解三角函数问题的一般思路:
(1)求三角函数值,一般利用已知条件将向量关系转化为三角函数关系式.利用同角三角函数关系式及三角函数中常用公式求解.
(2)求角时通常由向量转化为三角函数问题,先求值再求角.
(3)解决与向量有关的三角函数问题的思想方法是转化与化归的数学思想,即通过向量的相关运算把问题转化为三角函数问题.
(4)解三角形.利用向量的坐标运算,把向量垂直或共线转化为相应的方程,在三角形中利用内角和定理或正、余弦定理解决问题.
5.用向量法解决物理问题的步骤如下:
(1)抽象出物理问题中的向量,转化为数学问题;
(2)建立以向量为主体的数学模型;
(3)利用向量的线性运算或数量积运算,求解数学模型;
(4)用数学模型中的数据解释或分析物理问题.
6.常见的向量表示形式:
(1)重心.若点G是的重心,则或 (其中P为平面内任意一点).反之,若,则点G是的重心.
(2)垂心.若H是的垂心,则.反之,若
,则点H是的垂心.
(3)内心.若点I是的内心,则.反之,若
,则点I是的内心.
(4)外心.若点O是的外心,则或.反之,若,则点O是的外心.

1.平面向量数量积的概念
(1)数量积的概念
已知两个非零向量,我们把数量叫做向量与的数量积(或内积),记作,即,其中θ是与的夹角.
【注】零向量与任一向量的数量积为0.
(2)投影的概念
设非零向量与的夹角是θ,则()叫做向量在方向上(在方向上)的投影.
如图(1)(2)(3)所示,分别是非零向量与的夹角为锐角、钝角、直角时向量在方向上的投影的情形,其中,它的意义是,向量在向量方向上的投影长是向量的长度.
(3)数量积的几何意义
由向量投影的定义,我们可以得到的几何意义:数量积等于的长度与在方向上的投影的乘积.
2.平面向量数量积的运算律
已知向量和实数,则
①交换律:;
②数乘结合律:;
③分配律:.

【知识拓展】
1.设非零向量,是与的夹角.
(1)数量积:.
(2)模:.
(3)夹角: .
(4)垂直与平行:;a∥b⇔a·b=±|a||b|.
【注】当与同向时,;
当与反向时,.
(5)性质:|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔
2.平面向量的模及其应用的类型与解题策略:
(1)求向量的模.解决此类问题应注意模的计算公式,或坐标公式的应用,另外也可以运用
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档