下载此文档

人教高中数学专题11 函数的奇偶性、对称性和周期性综合(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载21页1.49 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题11 函数的奇偶性、对称性和周期性综合(解析版).docx
文档介绍:
专题11 函数的奇偶性、对称性和周期性综合
专项突破一 奇偶性与周期性
1.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于(       )
A.1 B.-1 C. D.
【解析】∵为上的偶函数,∴,
又当时,,∴,
当时,,∴.故选:A.
2.已知函数是定义在上的奇函数,且,当时,,则(       )
A.-2 B. C.2 D.6
【解析】因为为上的奇函数,所以,即,解得,
又因为,所以,
所以,
所以是以12为周期的周期函数,所以.故选:B.
3.已知定义域为R的奇函数满足,且当时,则(       )
A.2 B.1 C. D.
【解析】奇函数满足,
所以,以4为周期的奇函数.
.故选:A
4.已知是定义在R上的奇函数,,且,则(       )
A.2 B. C.4 D.
【解析】,∴,所以函数的周期为,
则,∴,

,,故选:B.
5.若函数满足,且当时,,则函数与函数的图像的交点个数为(       ).
A.18个 B.16个 C.14个 D.10个
【解析】因,于是得函数是以2为周期的周期函数,又当时,,
则有函数与函数都是偶函数,
在同一坐标系内作出函数与函数的图像,如图,
观察图象得,函数与函数的图像有9个交点,由偶函数的性质知,两函数图象在时有9个交点,所以函数与函数的图像的交点个数为18.故选:A
6.定义在上的奇函数满足,且在上单调递减,若方程在上有实数根,则方程在区间上所有实根之和是(          )
A. B. C. D.
【解析】由知函数的图象关于直线对称,
由是上的奇函数知,
在中,以代得:即,
所以,即,
所以是以4为周期的周期函数.考虑的一个周期,例如,,
由在,上是减函数知在,上是增函数,
在,上是减函数,在,上是增函数.
对于奇函数有,(2),
故当时,,当时,(2),
当时,,当时,(2),
方程在,上有实数根,则这实数根是唯一的,因为在上是单调函数,
由于为奇函数,故在上有唯一实根,在上无实数根.
则由于,故方程在上有唯一实数.
在上,则方程在上没有实数根.
从而方程在一个周期内有且仅有两个实数根.
当,,方程的两实数根之和为,
当,,方程的所有四个实数根之和为.
故选:C
7.已知函数是定义在上的偶函数,且对任意的,都有,当时,.若直线与函数的图象在区间上恰有3个不同的公共点,则实数a的取值范围是(       )
A. B. C. D.
【解析】因为函数是定义在上的偶函数,且对任意的,都有,
所以,且的图象关于直线对称,
所以,所以函数的周期.因为当时,,且是偶函数,
所以可画出函数在一个周期上的图象如图所示.
显然时,与在区间上恰有两个不同的公共点.
当直线与抛物线相切时,也恰有两个不同的公共点.
由题意知,即.故,即.
综上可知实数a的取值范围是,故选:D.
8.已知定义在R上的函数的图像关于y轴对称,且,将函数的图像向右平移一个单位长度后关于原点对称,则______,其中;______
【解析】依题意,知,为奇函数,则,
又,故,,
,则最小正周期.因为,
所以,,故,
.故答案为:;
9.奇函数的定义域为R,若为偶函数,且,则______.
【解析】由函数为偶函数可得,,
又,故,所以,即
所以,故该函数是周期为8的周期函数.
又函数为奇函数,故,.
所以.
10.已知定义在上的奇函数满足,且当时,,则__________.
【解析】:是上的奇函数, ,
又, ,
,所以是周期函数,且周期为4,
.
11.已知是偶函数,周期是8,当时,,则____.
【解析】因为当时,,所以,
又因为是偶函数,周期是8,所以,
12.已知为R上的奇函数,且,当时,,则的值为______.
【解析】由题设,,故,即的周期为2,
所以,且,
所以.
13.若偶函数对任意都有,且当时,,则______.
【解析】因为,所以,
所以周期为6,且为偶函数,当时,,

,所以,根据函数为偶函数,
所以,即.
14.已知定义在R上的函数满足:
①对任意实数,,均有;
②;
③对任意,.
(1)求的值,并判断的奇偶性;
(2)对任意的x∈R,证明:;
(3)直接写出的所有零点(不需要证明).
【解析】(1)∵对任意实数,,均有,
∴令,则,可得,
∵对任意,,,∴f(0)>0,∴;
令,则;
∴;∵f(x)定义域为R关于原点对称,且令时,,
∴是R上的偶函数;
(2)令,则,
则,
∴,即;
(3
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档