下载此文档

人教高中数学专题15 几何体与球切、接、截的问题(讲)【解析版】.docx


高中 高一 上学期 数学 人教版

1340阅读234下载17页1.15 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题15 几何体与球切、接、截的问题(讲)【解析版】.docx
文档介绍:
第一篇 热点、难点突破篇
专题15几何体与球切、接、截的问题(讲)
真题体验 感悟高考
1.(2021·全国·统考高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为(    )
A.26% B.34% C.42% D.50%
【答案】C
【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.
【详解】由题意可得,S占地球表面积的百分比约为:
.
故选:C.
2.(2020·全国·统考高考真题)已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为(    )
A. B. C. D.
【答案】A
【分析】由已知可得等边的外接圆半径,进而求出其边长,得出的值,根据球的截面性质,求出球的半径,即可得出结论.
【详解】设圆半径为,球的半径为,依题意,
得,为等边三角形,
由正弦定理可得,
,根据球的截面性质平面,

球的表面积.
故选:A
3.(2022·全国·统考高考真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(    )
A. B. C. D.
【答案】C
【分析】方法一:先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.
【详解】[方法一]:【最优解】基本不等式
设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,
设四边形ABCD对角线夹角为,

(当且仅当四边形ABCD为正方形时等号成立)
即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为
又设四棱锥的高为,则,
当且仅当即时等号成立.
故选:C
[方法二]:统一变量+基本不等式
由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高


(当且仅当,即时,等号成立)
所以该四棱锥的体积最大时,其高.
故选:C.
[方法三]:利用导数求最值
由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,,令,,设,则,
,,单调递增, ,,单调递减,
所以当时,最大,此时.
故选:C.
【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;
方法二:消元,实现变量统一,再利用基本不等式求最值;
方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.
总结规律 预测考向
(一)规律与预测
(1)以几何体的结构特征为基础,考查几何体的面积体积计算为主,题型基本稳定为选择题或填空题,难度中等以下;也有几何体的面积或体积在解答题中与平行关系、垂直关系等相结合考查的情况.
(2)与立体几何相关的“数学文化”、实际问题等相结合,考查数学应用.
(3)几何体的表面积与体积是主要命题形式.有时作为解答题的一个构成部分考查几何体的表面积与体积,有时结合面积、体积的计算考查等积变换等转化思想.几何体与球的切、接、截问题,往往是知识考查的载体.
(4)以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理,对命题的真假进行判断,属于基础题.空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问,第(2)问则考查几何体面积、体积的计算.
(二)本专题考向展示

考点突破 典例分析
考向一 空间几何体的外接球
【核心知识】
(1)长方体的外接球直径等于长方体的体对角线长.
(2)三棱锥S-ABC的外接球球心O的确定方法:先找到△ABC的外心O1,然后找到过O1的平面ABC的垂线l,在l上找点O,使OS=OA,点O即为三棱锥S-ABC的外接球的球心.
(3)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则.
(4)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则.
(5)正四面体的外接球与内切球的半径之比为3∶1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档