下载此文档

人教高中数学专题18 圆锥曲线的几何性质问题(讲)【解析版】.docx


高中 高一 上学期 数学 人教版

1340阅读234下载31页1.68 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题18 圆锥曲线的几何性质问题(讲)【解析版】.docx
文档介绍:
第一篇 热点、难点突破篇
专题18 圆锥曲线的几何性质问题(讲)
真题体验 感悟高考
1.(2021·全国·统考高考真题)抛物线的焦点到直线的距离为,则(    )
A.1 B.2 C. D.4
【答案】B
【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
【详解】抛物线的焦点坐标为,
其到直线的距离:,
解得:(舍去).
故选:B.
2.(2022·全国·统考高考真题)已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为(    )
A. B. C. D.
【答案】B
【分析】根据离心率及,解得关于的等量关系式,即可得解.
【详解】解:因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
3.(2020·全国·统考高考真题)已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
【答案】2
【分析】根据双曲线的几何性质可知,,,即可根据斜率列出等式求解即可.
【详解】联立,解得,所以.
依题可得,,,即,变形得,,
因此,双曲线的离心率为.
故答案为:.
总结规律 预测考向
(一)规律与预测
纵观近几年的高考试题,高考对圆锥曲线的考查,选择题、填空题、解答题三种题型均有,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查抛物线、双曲线的几何性质;四是考查直线与圆锥曲线(椭圆、抛物线较多)位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等.
近几年,小题多用于考查抛物线、双曲线的定义、标准方程、几何性质等,命题角度呈现较强的灵活性;解答题主要考查直线与椭圆的位置关系,涉及三角形面积、参数范围、最值、定值、定点、定直线等问题,命题方向多变,难度基本稳定.
(二)本专题考向展示

考点突破 典例分析
考向一 圆锥曲线的定义及标准方程
【核心知识】
1.圆锥曲线的定义
(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).
(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).
(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.
2.求圆锥曲线标准方程“先定型,后计算”
所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.
3.与椭圆共焦点的椭圆系方程为.
【典例分析】
典例1.(2021·山东·高考真题)关于,的方程,给出以下命题;
①当时,方程表示双曲线;②当时,方程表示抛物线;③当时,方程表示椭圆;④当时,方程表示等轴双曲线;⑤当时,方程表示椭圆.
其中,真命题的个数是( )
A.2 B.3 C.4 D.5
【答案】B
【分析】
根据曲线方程,讨论m的取值确定对应曲线的类别即可.
【详解】
当时,方程表示双曲线;
当时,方程表示两条垂直于轴的直线;
当时,方程表示焦点在轴上的椭圆;
当时,方程表示圆;
当时,方程表示焦点在轴上的椭圆.
∴①③⑤正确.
故答案为:B
典例2.(2022·天津·统考高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为(    )
A. B.
C. D.
【答案】C
【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.
【详解】抛物线的准线方程为,则,则、,
不妨设点为第二象限内的点,联立,可得,即点,
因为且,则为等腰直角三角形,
且,即,可得,
所以,,解得,因此,双曲线的标准方程为.
故选:C.
典例3.【多选题】(2020·海南·高考真题)已知曲线.(    )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线方程为
D.若m=0,n>0,则C是两条直线
【答案】ACD
【分析】结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.
【详解】对于A,若,则可化为,
因为
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档