下载此文档

人教专题11 立体几何 11.1空间几何体 题型归纳讲义-2022届数学一轮复习(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载21页410 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题11 立体几何 11.1空间几何体 题型归纳讲义-2022届数学一轮复习(解析版).docx
文档介绍:
专题十一 《立体几何》讲义
11.1 空间几何体
知识梳理.空间几何体
1.直观图
(1)画法:常用斜二测画法.
(2)规则:
①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.
②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.

名称
棱柱
棱锥
棱台
图形
底面
互相平行且相等
多边形
互相平行且相似
侧棱
互相平行且相等
相交于一点,但不一定相等
延长线交于一点
侧面形状
平行四边形
三角形
梯形
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
球▲
图形
母线
互相平行且相等,垂直于底面
长度相等且相交于一点
延长线交于一点
轴截面
全等的矩形
全等的等腰三角形
全等的等腰梯形

侧面展开图
矩形
扇形
扇环
4.空间几何体的表面积与体积公式
名称
几何体  
表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥)
S表面积=S侧+S底
V=Sh
台体(棱台和圆台)
S表面积=S侧+S上+S下
V=(S上+S下+)h

S=4πR2
V=πR3
题型一. 正方体的展开与折叠问题
1.如图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是(  )
A. B. C. D.
【解答】解:将其折叠起来,变成正方体后的图形中,相邻的平面中三条线段是平行线,排除A,C;相邻平面只有两个是空白面,排除D;
故选:B.
2.如图是表示一个正方体表面的一种平面展开图,图中的四条线段AB、CD、EF和GH在原正方体中不相交的线段的对数为(  )
A.2 B.3 C.4 D.5
【解答】解:平面展开图还原成正方体:
G点与C点重合,
B点与F重合.
观察正方体中的线段不难发现:
GH与EF,GH与AF,CD与AF,CD与EF均不相交.
∴在正方体中不相交的线段有4对.
故选:C.
3.如图是一个正方体的平面展开图,则在该正方体中(  )
A.AE∥CD B.CH∥BE C.DG⊥BH D.BG⊥DE
【解答】解:还原正方体直观图如图,可知AE与CD为异面直线,故选项A不正确;
由EH∥=BC,可得CH∥BE,故选项B正确;
正方形中易得DG⊥平面BCH,所以有DG⊥BH,故选项C正确;
因为BG∥AH,且DE⊥AH,所以BG⊥DE,故选项D正确.
故选:BCD.
题型二. 多面体表面最短距离问题
1.如图,正三棱锥S﹣ABC中,∠BSC=40°,SB=2,一质点自点B出发,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为(  )
A.2 B.3 C.23 D.33
【解答】解:将三棱锥S﹣ABC沿侧棱SB展开,
其侧面展开图如图所示,由图中红色路线可得结论.
根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为:
4+4+2×2×2×12=23
故选:C.
2.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为1cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为(  )cm.
A.12 B.13 C.61 D.15
【解答】解:如图所示,
把侧面展开两周可得对角线最短:AA1=62+52=61cm.
故选:C.
3.如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求绳子最短时,顶点到绳子的最短距离
 4xx2+16 (用x表示).
【解答】解:∵底面半径r=1,母线长l=4,
∴侧面展开扇形的圆心角α=90°
因此,将圆锥侧面展开成一个扇形,从点M拉一绳子围绕圆锥侧面转到点A,最短距离为Rt△ASM中,斜边AM的长度
∵SM=x,SA=4
∴绳子的最短长度的平方f(x)=AM2=x2+42=x2+16.
绳子最短时,定点S到绳子的最短距离等于Rt△ASM的斜边上的高,设这个距离等于d,
则d=SM⋅ASAM=4xx2+16,
故答案为4xx2+16.
题型三. 截面问题
1.如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档