下载此文档

人教专题13解析几何 13.2圆的方程 题型归纳讲义-2022届数学一轮复习(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载27页389 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题13解析几何 13.2圆的方程 题型归纳讲义-2022届数学一轮复习(解析版).docx
文档介绍:
专题十三 《解析几何》讲义
13.2 圆的方程
知识梳理.圆的方程
1.圆的方程:
(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0)是以点(a,b)为圆心,r为半径的圆的方程,叫做圆的标准方程.
(2)圆的一般方程:
当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程.
圆心为,半径长为.
2.直线与圆的位置关系(半径为r,圆心到直线的距离为d)
相离
相切
相交
图形
量化
方程观点
Δ0
Δ0
Δ0
几何观点
dr
dr
dr
(1)圆的切线方程常用结论
①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
(2)有关弦长问题的2种求法
几何法
直线被圆截得的半弦长,弦心距d和圆的半径r构成直角三角形,即r2=2+d2
代数法
联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|=·|x1-x2|=或|AB|=·|y1-y2|=
eq \r((y1+y2)2-4y1y2)
3.圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)
相离
外切
相交
内切
内含
图形
量的关系
d>r1+r2
d=r1+r2
|r1-r2|<d<r1+r2
d=|r1-r2|
d<|r1-r2|
圆与圆位置关系问题的解题策略
(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.
(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
题型一. 圆的方程、轨迹方程
1.已知圆C的圆心在直线x﹣2y﹣3=0上,且过点A(2,﹣3),B(﹣2,﹣5),则圆C的标准方程为 (x+1)2+(y+2)2=10 .
【解答】解:根据题意,圆C的圆心在直线x﹣2y﹣3=0上,设圆心的坐标为(2t+3,t),
圆C经过点A(2,﹣3),B(﹣2,﹣5),则(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,
解可得t=﹣2,则2t+3=﹣1,即圆心C的坐标为(﹣1,﹣2),
圆的半径为r,则r2=|CA|2=(﹣1﹣2)2+(﹣2+3)2=10,
故圆C的标准方程为(x+1)2+(y+2)2=10;
故答案为:(x+1)2+(y+2)2=10.
2.已知圆C与圆(x﹣1)2+y2=1关于原点对称,则圆C的方程为(  )
A.x2+y2=1 B.x2+(y+1)2=1
C.x2+(y﹣1)2=1 D.(x+1)2+y2=1
【解答】解:圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.
点(1,0)关于原点的对称点为(﹣1,0),
则所求圆的方程为(x+1)2+y2=1.
故选:D.
3.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.
(Ⅰ)求圆C的标准方程;
【解答】解:(1)由题意,圆的半径为1+1=2,圆心坐标为(1,2),
∴圆C的标准方程为(x﹣1)2+(y−2)2=2;
4.在平面直角坐标系xOy中,O为坐标原点,动点P与两个定点M(1,0),N(4,0)的距离之比为12.
(Ⅰ)求动点P的轨迹W的方程;
【解答】解:(Ⅰ)设点P坐标为(x,y),依题意得:|PM||PN|=12,
又M(1,0),N(4,0),
∴2(x−1)2+y2=(x−4)2+y2,
化简得:x2+y2=4,
则动点P轨迹W方程为x2+y2=4;
5.在平面直角坐标系xOy中,已知点B(2,0),C(﹣2,0),设直线AB,AC的斜率分别为k1,k2,且k1k2=−12,记点A的轨迹为E.
(1)求E的方程;
【解答】解:(1)设A(x,y),则k1k2=yx−2⋅yx+2=−12,
整理,得x2+2y2=4(x≠±2),
即E的方程为x2+2y2=4(x≠±2);
6.若AB=2,AC=2BC,则S△ABC的最大值 22 .
【解答】解:设BC=x,则AC=2x,
根据面积公式得S△ABC=12AB•BCsinB=12×2x×1−cos2B,
又根据余弦定
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档