下载此文档

人教高中数学思想03 数形结合思想(讲)【解析版】.docx


高中 高一 上学期 数学 人教版

1340阅读234下载28页1.59 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学思想03 数形结合思想(讲)【解析版】.docx
文档介绍:
第三篇 思想方法篇
思想03 数形结合思想(讲)
考向速览
方法技巧 典例分析
一.运用数形结合思想分析解决问题时,要遵循三个原则:
(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.
(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.
(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线.
二.特别提醒
数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学****中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:
(1)准确画出函数图象,注意函数的定义域;
(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解;利用数形结合探究方程解的问题应注意两点
(3)在解答题中数形结合思想是探究解题的思路时使用的,不可使用形的直观代替相关的计算和推理论证.
三. 命题规律
1.数形结合思想在高考试题中主要有以下几个常考点
(1)集合的运算及Venn图;
(2)函数及其图象;
(3)平面向量
(4)数列通项及求和公式的函数特征及函数图象;
(5)方程(多指二元方程)及方程的曲线;
(6)对于研究距离、角或面积的问题,往往涉及直线与圆、立体几何、圆锥曲线等,利用几何图形或形数转换求解;
(7)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用【与函数方程思想相结合】.
2.数形结合思想常用模型:一次、二次函数图象;“对勾函数”应用单调性或基本不等式;三角函数图象和性质;斜率公式;两点间的距离公式(或向量的模、复数的模);点到直线的距离公式等.
01 研究图形的形状、位置关系、性质等
【核心提示】
1.函数图象与性质应用问题:即通过函数图象来分析和解决函数问题的方法,对于高中数学函数贯穿始终,因此这种方法是最常用的,破解此类题的关键点:
①分析数理特征,一般解决问题时不能精确画出图象,只能通过图象的大概性质分析问题,因此需要确定能否用函数图象解决问题;
②画出函数图象,画出对应的函数、转化的函数或构造函数的图象;
③数形转化,这个转化实际是借助函数图象将难以解决的数理关系明显化;
④得出结论,通过观察函数图象得出相应的结论.
2.熟练掌握函数图像的变换:由函数图象的变换能较快画出函数图象,应该掌握平移(上下左右平移)、翻折(关于特殊直线翻折)、对称(中心对称和轴对称)等基本转化法与函数解析式的关系.
【典例分析】
典例1.(河南省普高联考2022-2023学年高三下学期测评(四))函数的大致图象是(    )
A. B.
C. D.
【答案】A
【分析】先判断函数的奇偶性即可排除选项;再利用特殊值即可排除选项,进而求解.
【详解】函数的定义域为,
且,
所以是奇函数,图象关于原点对称,排除选项,
只需研究的图象,当时,,则,排除选项.
故选:.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)利用函数值考察特征点,排除不合要求的图象.(5)应用导数研究函数的性质,考察图象升降的快慢、极值点,发现图象差别.利用上述方法排除、筛选选项.
典例2.(2022·北京·统考模拟预测)已知函数的图象如图1所示,则图2对应的函数有可能是(    )
A. B. C. D.
【答案】C
【分析】利用分类讨论思想,根据函数值的符号,及变化,分别对四个选项判断即可求解.
【详解】对于,当时,,所以,故选项错误;
对于,当时,,所以,故选项错误;
对于,当时,,所以,且时,,;当时,,所以,且时,,,故选项正确;
对于,当时,,则,所以,故选项错误,
故选:.
典例3.(2023·河南·校联考模拟预测)已知O为坐标原点,F是椭圆的左焦点.若椭圆C上存在两点A,B满足,且A,B,O三点共线,则椭圆C
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档