下载此文档

微专题 利用导数解决实际问题 学案——2023届高考数学一轮人教版.docx


高中 高一 上学期 数学 人教版

1340阅读234下载44页2.51 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
微专题 利用导数解决实际问题 学案——2023届高考数学一轮人教版.docx
文档介绍:
第 1 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共13页
微专题:利用导数解决实际问题
【考点梳理】
函数的优化问题即实际问题中的最值问题,其一般解题步骤为:一设,设出自变量、因变量;二列,列出函数关系式,并写出定义域;三解,解出函数的最值,一般常用导数求解;四答,回答实际问题.
【题型归纳】
题型一:利润最大问题
1.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中,a为常数.已知销售价格为6元/千克时,每日可售出该商品13千克.
(1)求a的值;
(2)若该商品的成本为4元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
2.设某商品的利润只由生产成本和销售收入决定.生产成本C(单位:万元)与生产量x(单位:百件)间的函数关系是;销售收入S(单位:万元)与生产量x间的函数关系是.
(1)把商品的利润表示为生产量x的函数;
(2)为使商品的利润最大化,应如何确定生产量?
3.某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是分,其中r(单位:cm)是瓶子的半径.已知每出售1mL的饮料,制造商可获利0.2分,且制作商能制作的瓶子的最大半径为6cm.
(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶饮料的利润最小?
(3)假设每瓶饮料的利润不为负值,求瓶子的半径的取值范围.
题型二:面积、体积最大问题
4.某游乐场计划用钢管制作成一个长方体的框架,内部安装攀爬设备供游客活动之用,若钢管总长为54m,框架的底面长宽之比为5:4,那么框架高为多少时,这个框架内部的活动空间最大?(钢管的中空部分和厚度忽略不计)
5.如图,某街道拟设立一占地面积为平方米的常态化核酸采样点,场地形状为矩形.根据防疫要求,采样点周围通道设计规格要求为:长边外通道宽5米,短边外通道宽8米,采样点长边不小于20米,至多长28米.
第 2 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共13页
(1)设采样点长边为米,采样点及周围通道的总占地面积为平方米,试建立关于的函数关系式,并指明定义域;
(2)当时,试求的最小值,并指出取到最小值时的取值.
6.如图所示,是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得,,,四个点重合于图中的点,正好形成一个正四棱柱形状的包装盒,,在上是被切去的等腰直角三角形斜边的两个端点,设.
(1)求包装盒的容积关于的函数表达式,并求出函数的定义域;
(2)当为多少时,包装盒的容积最大?并求出此时包装盒的高与底面边长的比值.

题型三:成本最小问题
7.第31届世界大学生夏季运动会即将在成都拉开帷幕.为了配合大运会的基础设施建设,组委会拟在成都东安湖体育公园修建一座具有成都文化特色的桥.两端的桥墩已建好,这两桥墩相距160米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米(其中,)的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建n个桥墩(显然),记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)需新建多少个桥墩才能使y最小?
8.某城镇在规划的一工业园区内架设一条16千米的高压线,已知该段线路两端的高压线塔已经搭建好,余下的工程只需要在已建好的两高压线塔之间等距离的再修建若干座高压电线塔和架设电线.已知建造一座高压线电塔需2万元,搭建距离为x千米的相邻两高压电线塔之间的电线和人工费用等为万元,所有高压电线塔都视为“点”,且不考虑其他因素,记余下的工程费用为y万元.
第 3 页
学科网(北京)股份有限公司
学科网(北京)股份有限公司
试卷第1页,共13页
(1)试写出y关于x的函数关系式.
(2)问:需要建造多少座高压线塔,才能使工程费y有最小值?最小值是多少?(参考数据:)
9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用15年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与15年的能源消耗费用之和.
(1)求k的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
题型四:用料最省问题
10.某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档