下载此文档

河北省衡水市武邑中学人教版高一上学期期中数学试卷【解析版】.zip


高中 高一 上学期 数学 人教版

1340阅读234下载16页283 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
2015-2016学年河北省衡水市武邑中学高一(上)期中数学试卷
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只且只有一项是符合题目要求的,讲正确答案填涂在答题卡上.
1.设全集U={1,2,3,4,5,6},集合A={1,2},B={2,3},则A∩(∁UB)=( )
A.{4,5} B.{2,3} C.{1} D.{2}
2.cos510°的值为( )
A. B.﹣ C.﹣ D.
3.已知角α的终边经过点P(﹣3,4),则sinα的值等于( )
A.﹣ B. C. D.﹣
4.下列四组函数中,表示同一函数的是( )
A.f(x)=log22x,g(x)= B.f(x)=,g(x)=x
C.f(x)=x,g(x)= D.f(x)=lnx2,g(x)=2lnx
5.若sin(π﹣θ)<0,tan(π+θ)>0,则θ的终边在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.下列函数中,既是奇函数,又在区间[0,+∞)上单调递增的函数是( )
A.y=tanx B.y=sinx C. D.
7.设函数,则f(f(﹣1))的值为( )
A.2 B.1 C.﹣1 D.﹣2
8.一项实验中获得的一组关于变量y,t之间的数据整理后得到如图所示的散点图.下列函数中可以
近视刻画y与t之间关系的最佳选择是( )
A.y=at B.y=logat C.y=at3 D.y=a
9.三个数a=sin1,b=sin2,c=ln0.2之间的大小关系是( )
A.c<b<a B.c<a<b C.b<a<c D.a<c<b
10.函数f(x)=2sinx+x+m,x∈[﹣,]有零点,则m的取值范围是( )
A.[2,+∞) B.(﹣∞,2] C.(﹣∞,2]∪(2,+∞) D.[﹣2,2]
11.函数f(x)满足对定义域内的任意x,都有f(x+2)+f(x)<2f(x+1),则函数f(x)可以是( )
A.f(x)=lnx B.f(x)=x2﹣2x C.f(x)=ex D.f(x)=2x+1
12.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,则在区间(﹣2,6]内关于x的方程f(x)﹣log2(x+2)=0的零点的个数是( )
A.1 B.2 C.3 D.4
二.填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置.
13.已知tanα=2,则cos2α=__________.
14.一个半径为R的扇形,它的周长为4R,则这个扇形的面积为__________.
15.函数的值域是__________.
16.过原点O的直线与函数y=2x的图象交于A,B两点,过B作y轴的垂线交函数y=4x的图象于点C,若AC平行于y轴,则点A的坐标是__________.
三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.已知角x的终边经过点P(﹣1,3)
(1)求sinx+cosx的值
(2)求的值.
18.已知函数f(x)=2sin(2x+)+1.
(1)求f(x)的周期;
(2)求f(x)的单调递增区间;
(3)若x∈[0,],求f(x)的值域.
19.sinα,cosα为方程4x2﹣4mx+2m﹣1=0的两个实根,,求m及α的值.
20.已知函数f(x)=2lg(x+1)和g(x)=lg(2x+t)(t为常数).
(1)求函数f(x)的定义域;
(2)若x∈[0,1]时,g(x)有意义,求实数t的取值范围.
(3)若x∈[0,1]时,f(x)≤g(x)恒成立,求实数t的取值范围.
21.销售甲,乙两种商品所得到利润与投入资金x(万元)的关系分别为f(x)=m,g(x)=bx(其中m,a,b∈R),函数f(x),g(x)对应的曲线C1,C2,如图所示.
(1)求函数f(x)与g(x)的解析式;
(2)若该商场一共投资4万元经销甲,乙两种商品,求该商场所获利润的最大值.
22.定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档