绝密★启用前 2021年普通高等学校招生全国统一考试(甲卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,则( ) A. B. C. D. 【答案】B 【解析】 【分析】根据交集定义运算即可 【详解】因为,所以, 故选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解. 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图: 根据此频率分布直方图,下面结论中不正确的是( ) A. 该地农户家庭年收入低于4.5万元的农户比率估计为6% B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10% C. 估计该地农户家庭年收入的平均值不超过6.5万元 D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 【答案】C 【解析】 【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C. 【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值. 该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确; 该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误. 综上,给出结论中不正确的是C. 故选:C. 【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于 . 3. 已知,则( ) A. B. C. D. 【答案】B 【解析】 【分析】由已知得,根据复数除法运算法则,即可求解. 【详解】, . 故选:B. 4. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )() A. 1.5 B. 1.2 C. 0.8 D. 0.6 【答案】C 【解析】 分析】根据关系,当时,求出,再用指数表示,即可求解. 【详解】由,当时,, 则. 故选:C. 5. 已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( ) A. B. C. D. 【答案】A 【解析】 【分析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案. 【详解】因为,由双曲线的定义可得, 所以,; 因为,由余弦定理可得, 整理可得,所以,即. 故选:A 【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键. 6. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( ) A. B. C. D. 【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示, 所以其侧视图为 故选:D 7. 等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【解析】 【分析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列时,满足, 但是不是递增数列