2021年普通高等学校招生全国统一考试 数学 本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”. 2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,,则( ) A. B. C. D. 【答案】B 【解析】 【分析】利用交集的定义可求. 【详解】由题设有, 故选:B . 2. 已知,则( ) A. B. C. D. 【答案】C 【解析】 【分析】利用复数的乘法和共轭复数的定义可求得结果. 【详解】因为,故,故 故选:C. 3. 已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A. B. C. D. 【答案】B 【解析】 【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求. 【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得. 故选:B. 4. 下列区间中,函数单调递增的区间是( ) A. B. C. D. 【答案】A 【解析】 【分析】解不等式,利用赋值法可得出结论. 【详解】因为函数的单调递增区间为, 对于函数,由, 解得, 取,可得函数的一个单调递增区间为, 则,,A选项满足条件,B不满足条件; 取,可得函数的一个单调递增区间为, 且,,CD选项均不满足条件. 故选:A. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求 的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数. 5. 已知,是椭圆:的两个焦点,点在上,则的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】C 【解析】 【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案. 【详解】由题,,则, 所以(当且仅当时,等号成立). 故选:C. 【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到. 6. 若,则( ) A. B. C. D. 【答案】C 【解析】 【分析】将式子进行齐次化处理,代入即可得到结果. 【详解】将式子进行齐次化处理得: . 故选:C. 【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论. 7. 若过点可以作曲线的两条切线,则( ) A. B. C. D. 【答案】D 【解析】 【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果 【详解】在曲线上任取一点,对函数求导得, 所以,曲线在点处的切线方程为,即, 由题意可知,点在直线上,可得, 令,则. 当时,,此时函数单调递增, 当时,,此时函数单调递减, 所以,, 由题意可知,直线与曲线的图象有两个交点,则, 当时,,当时,,作出函数的图象如下图所示: 由图可知,当时,直线与曲线的图象有两个交点. 故选:D. 【点睛】数形结合是解决数学问题常用且有效的方法 8. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】B 【解析】 【分析】根据独立事件概率关系逐一判断 【详解】 , 故选:B 【点睛】判断事件是否独立,先计算对应概率,再判断是否成立 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得