绝密★启用前 2020年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( ) A. B. {–3,–2,2,3) C. {–2,0,2} D. {–2,2} 【答案】D 【解析】 【分析】 解绝对值不等式化简集合的表示,再根据集合交集的定义进行求解即可. 【详解】因为, 或, 所以. 故选:D. 【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 2.(1–i)4=( ) A. –4 B. 4 C. –4i D. 4i 【答案】A 【解析】 【分析】 根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可. 【详解】. 故选:A. 【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题. 3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A. 5 B. 8 C. 10 D. 15 【答案】C 【解析】 【分析】 根据原位大三和弦满足,原位小三和弦满足 从开始,利用列举法即可解出. 【详解】根据题意可知,原位大三和弦满足:. ∴;;;;. 原位小三和弦满足:. ∴;;;;. 故个数之和为10. 故选:C. 【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题. 4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名 B. 18名 C. 24名 D. 32名 【答案】B 【解析】 【分析】 算出第二天订单数,除以志愿者每天能完成的订单配货数即可. 【详解】由题意,第二天新增订单数为, 故需要志愿者名. 故选:B 【点晴】本题主要考查函数模型的简单应用,属于基础题. 5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是( ) A. a+2b B. 2a+b C. a–2b D. 2a–b 【答案】D 【解析】 【分析】 根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 【详解】由已知可得:. A:因为,所以本选项不符合题意; B:因为,所以本选项不符合题意; C:因,所以本选项不符合题意; D:因为,所以本选项符合题意. 故选:D. 【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力. 6.记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=( ) A. 2n–1 B. 2–21–n C. 2–2n–1 D. 21–n–1 【答案】B 【解析】 【分析】 根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可. 【详解】设等比数列的公比为, 由可得:, 所以, 因此. 故选:B. 【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前项和公式的应用,考查了数学运算能力. 7.执行右面的程序框图,若输入的k=0,a=0,则输出的k为( ) A. 2 B. 3 C. 4 D. 5 【答案】C 【解析】 分析】 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的值,模拟程序的运行过程,分析循环中各变量值的变