下载此文档

2022年浙江高考数学(理科)试卷(含答案)25.doc


高中 高一 上学期 数学 人教版

1340阅读234下载16页306 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022年浙江高考数学(理科)试卷(含答案)25.doc
文档介绍:
2016年浙江省高考数学试卷(理科)
 
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.(5分)(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RQ)=(  )
A.[2,3] B.(﹣2,3] C.[1,2) D.(﹣∞,﹣2]∪[1,+∞)
2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )
A.m∥l B.m∥n C.n⊥l D.m⊥n
3.(5分)(2016•浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=(  )
A.2 B.4 C.3 D.6
4.(5分)(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是(  )
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2
C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2
5.(5分)(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期(  )
A.与b有关,且与c有关 B.与b有关,但与c无关
C.与b无关,且与c无关 D.与b无关,但与c有关
6.(5分)(2016•浙江)如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )
A.{Sn}是等差数列 B.{Sn2}是等差数列
C.{dn}是等差数列 D.{dn2}是等差数列
7.(5分)(2016•浙江)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则(  )
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
8.(5分)(2016•浙江)已知实数a,b,c.(  )
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100
 
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
9.(4分)(2016•浙江)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是      .
10.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=      ,b=      .
11.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是      cm2,体积是      cm3.
12.(6分)(2016•浙江)已知a>b>1,若logab+logba=,ab=ba,则a=      ,b=      .
13.(6分)(2016•浙江)设数列{an}的前n项和为Sn,若S2=4,an+1=2Sn+1,n∈N*,则a1=      ,S5=      .
14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是      .
15.(4分)(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是      .
 
三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.
16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S=,求角A的大小.
17.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(Ⅰ)求证:EF⊥平面ACFD;
(Ⅱ)求二面角B﹣AD﹣F的余弦值.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档