下载此文档

人教版专题19 计数原理(理科专用)(教师版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载8页168 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题19 计数原理(理科专用)(教师版).docx
文档介绍:
专题19 计数原理(理科专用)
1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(       )
A.12种 B.24种 C.36种 D.48种
【答案】B
【解析】
【分析】
利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解
【详解】
因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式,
故选:B
2.【2021年乙卷理科】将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有(       )
A.60种 B.120种 C.240种 D.480种
【答案】C
【解析】
【分析】
先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.
【详解】
根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,
故选:C.
【点睛】
本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
3.【2020年新课标1卷理科】的展开式中x3y3的系数为(       )
A.5 B.10
C.15 D.20
【答案】C
【解析】
【分析】
求得展开式的通项公式为(且),即可求得与展开式的乘积为或形式,对分别赋值为3,1即可求得的系数,问题得解.
【详解】
展开式的通项公式为(且)
所以的各项与展开式的通项的乘积可表示为:

在中,令,可得:,该项中的系数为,
在中,令,可得:,该项中的系数为
所以的系数为
故选:C
【点睛】
本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.
4.【2020年新课标2卷文科】如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称ai,aj,ak为原位大三和弦;若k–j=4且j–i=3,则称ai,aj,ak
为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为(       )
A.5 B.8 C.10 D.15
【答案】C
【解析】
【分析】
根据原位大三和弦满足,原位小三和弦满足
从开始,利用列举法即可解出.
【详解】
根据题意可知,原位大三和弦满足:.
∴;;;;.
原位小三和弦满足:.
∴;;;;.
故个数之和为10.
故选:C.
【点睛】
本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.
5.【2020年新高考1卷(山东卷)】6名同学到甲、
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档