下载此文档

人教版专题10 统计案例(独立性检测与回归分析)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载65页3.09 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题10 统计案例(独立性检测与回归分析)(解析版).docx
文档介绍:
专题10 统计案例(独立性检测与回归分析)
一、核心先导
二、考点再现
【考点1】相关关系与回归分析
回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.
(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.
(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.
(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系.
【考点2】线性回归方程
(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:,其回归方程为,则注意:线性回归直线经过定点.
(3)相关系数:.
【考点3】回归分析
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(,)称为样本点的中心.
(3)相关系数
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关.
r的绝对值越接近于1,表明两个变量的线性相关性越强.
r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
(4)相关指数:R2=1-.其中 (yi-i)2是残差平方和,其值越小,则R2越大(接近1),模型的拟合效果越好.
【知识拓展】
1.求解回归方程的关键是确定回归系数,,应充分利用回归直线过样本中心点(,).
2.根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,则两分类变量有关的把握越大.
3.根据回归方程计算的值,仅是一个预报值,不是真实发生的值.
【考点4】独立性检测
(1)利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.
(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)为
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
则随机变量K2=,其中n=a+b+c+d为样本容量.
【知识必备】
1.求解回归方程的关键是确定回归系数,,应充分利用回归直线过样本中心点(,).
2.根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,则两分类变量有关的把握越大.
3.根据回归方程计算的值,仅是一个预报值,不是真实发生的值.
三、考点解密
题型一:独立性检测
例1.(1)、(2023·全国·模拟预测)千百年来,我国劳动人民在生产实践中根据云的形状、走向速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩销云,地上雨淋林”“日落云里走,雨在半夜后”……小明同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A的100天日落和夜晚天气,得到如下列联表:
夜晚天气
日落云里走
下雨
不下雨
出现
25
5
不出现
25
45
临界值表
0.10
0.05
0.010
0.001
2.706
3.841
6.635
10.828
并计算得到,下列小明对地区天气判断正确的是(    )
A.夜晚下雨的概率约为
B.未出现“日落云里走”,但夜晚下雨的概率约为
C.出现“日落云里走”,有99.9%的把握认为夜晚会下雨
D.有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关
【答案】D
【分析】根据表中数据,即可对A,B选项判断,根据对立性检验即可判断C,D.
【详解】根据表中数据可知,夜晚下雨的概率约为,所以A错.
未出现“日落云里走”,但夜晚下雨的概率约为,故B错.
,对照临界值表可知,有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关,但不能说有99.9%的把握认为夜晚会下雨,故C错,D对.
故选:D
(2)、(2021·全国·模拟预测)2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新型冠状病毒灭活疫苗已获国家药监局批准附条件上市.在新型冠状病毒疫苗研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对某种新型冠状病毒疫苗进行实验,得到如下2×2列联表(部分数据缺失):
被新型冠状病
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档