下载此文档

人教第03讲 等比数列及前n项和(讲)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载7页46 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第03讲 等比数列及前n项和(讲)(解析版).docx
文档介绍:
第03讲 等比数列及其n项和
本讲为高考命题热点,分值12-17分,题型多变,选择题,填空题,解答题都会出现,
选择填空题常考等差等比数列的性质,大题题型多变,但对于文科来讲常考察基本量的计算与数列求和,对于理科考点相对难度较大,比如新定义,奇偶列等,考察逻辑推理能力与运算求解能力.
考点一 等比数列的概念
(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.
数学语言表达式:=q(n≥2,q为非零常数).
(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.那么=,即G2=ab.
考点二 等比数列的通项公式及前n项和公式
(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;
通项公式的推广:an=amqn-m.
(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn==.
考点三 等比数列的性质
已知{an}是等比数列,Sn是数列{an}的前n项和.
(1)若k+l=m+n(k,l,m,n∈N*),则有ak·al=am·an.
(2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm.
(3)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…仍成等比数列,其公比为
qn.
考点四 常用结论
1.若数列{an},{bn}(项数相同)是等比数列,则数列{c·an}(c≠0),{|an|},{a},,{an·bn},也是等比数列.
2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0.
3.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.
4.三个数成等比数列,通常设为,x,xq;四个符号相同的数成等比数列,通常设为,,xq,xq3.
高频考点一 等比数列基本量的运算
【例1】(2019·全国Ⅲ卷)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=(  )
A.16 B.8
C.4 D.2
【答案】C
【解析】设等比数列{an}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4.
因为数列{an}的各项均为正数,所以q=2.
又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.
【方法技巧】
1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
2.等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn==.
【变式训练】
1.(2020·新高考海南卷)已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.
(1)求{an}的通项公式;
(2)求a1a2-a2a3+…+(-1)n-1anan+1.
【解析】(1)设{an}的公比为q(q>1),且a2+a4=20,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档