下载此文档

人教第03讲 指数函数与对数函数(讲)-2023年高考数学一轮复习讲练测(全国通用)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载12页479 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第03讲 指数函数与对数函数(讲)-2023年高考数学一轮复习讲练测(全国通用)(解析版).docx
文档介绍:
第3讲 指数函数与对数函数
本讲为重要知识点,题型主要围绕函数的思想以及函数的性质考察,类比幂函数的研究方法,学****指数函数和对数函数的概念、图象和性质,并对这几类基本初等函数的变化差异进行比较。
通过解决简单的实际问题,体会如何根据变化差异,选择合适的函数类型构建数学模型,刻画现实问题的变化规律。
考点一 指数与指数函数
1.根式
(1)概念:式子叫做根式,其中n叫做根指数,a叫做被开方数.
(2)性质:()n=a(a使有意义);当n为奇数时,=a,当n为偶数时,=|a|=
2.分数指数幂
(1)规定:正数的正分数指数幂的意义是= (a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是= (a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.
(2)有理指数幂的运算性质:aras=ar+s;(ar)s=ars;(ab)r=arbr,其中a>0,b>0,r,s∈Q.
3.指数函数及其性质
(1)概念:函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.
(2)指数函数的图象与性质
a>1
0<a<1
图象
定义域
R
值域
(0,+∞)
性质
过定点(0,1),即x=0时,y=1
当x>0时,y>1;
当x<0时,0<y<1
当x<0时,y>1;
当x>0时,0<y<1
在(-∞,+∞)上是增函数
在(-∞,+∞)上是减函数
4.常用结论
(1)画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.
(2)在第一象限内,指数函数y=ax(a>0且a≠1)的图象越高,底数越大.
考点二 对数与对数函数
1.对数的概念
如果ax=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
2.对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且a≠1).
(2)对数的运算法则
如果a>0且a≠1,M>0,N>0,那么
①loga(MN)=logaM+logaN;
②loga=logaM-logaN;
③logaMn=nlogaM(n∈R);
④logamMn=logaM(m,n∈R,且m≠0).
(3)换底公式:logbN=(a,b均大于零且不等于1).
3.对数函数及其性质
(1)概念:函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
(2)对数函数的图象与性质
a>1
0<a<1
图象
性质
定义域:(0,+∞)
值域:R
当x=1时,y=0,即过定点(1,0)
当x>1时,y>0;
当0<x<1时,y<0
当x>1时,y<0;
当0<x<1时,y>0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
4.反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.
5.常用结论
①.换底公式的两个重要结论
(1)logab=;(2)logambn=logab.
其中a>0,且a≠1,b>0,且b≠1,m,n∈R.
②.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
③.对数函数y=logax(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象只在第一、四象限.
考点三 函数的应用(二)
1.函数的零点
(1)函数零点的定义
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.
(2)几个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
(3)函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.二次函数图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c(a>0)的图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)

零点个数
2
1
0
3.几类函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
二次函数模型
f(x)=ax2+bx
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档