下载此文档

人教第4章 三角函数、解三角形 第7节 解三角形的应用.docx


高中 高二 上学期 数学 人教版

1340阅读234下载22页496 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教第4章 三角函数、解三角形 第7节 解三角形的应用.docx
文档介绍:
第7节 解三角形的应用
考试要求 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.
1.仰角和俯角
在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).
2.方位角
从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).
3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.
4.坡度:坡面与水平面所成的二面角的正切值.
1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.
2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.
1.思考辨析(在括号内打“√”或“×”)
(1)东北方向就是北偏东45°的方向.(  )
(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.(  )
(3)俯角是铅垂线与视线所成的角,其范围为.(  )
(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(  )
答案 (1)√ (2)× (3)× (4)√
解析 (2)α=β;(3)俯角是视线与水平线所构成的角.
2.(易错题)若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的(  )
A.北偏东15° B.北偏西15°
C.北偏东10° D.北偏西10°
答案 B
解析 如图所示,∠ACB=90°.
又AC=BC,
∴∠CBA=45°,而β=30°,
∴α=90°-45°-30°=15°,
∴点A在点B的北偏西15°.
3.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为(  )
A.50 m B.50 m
C.25 m D. m
答案 A
解析 在△ABC中,由正弦定理得
=,
又∠CBA=180°-45°-105°=30°,
∴AB===50(m).
4.(2021·全国乙卷)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”,则海岛的高AB=(  )
A.+表高 B.-表高
C.+表距 D.-表距
答案 A
解析 因为FG∥AB,所以=,所以GC=·CA.因为DE∥AB,所以=,所以EH=·AH.又DE=FG,所以GC-EH=·(CA-AH)=·HC=·(HG+GC)=·(EG-EH+GC).由题设中信息可得,表目距的差为GC-EH,表高为DE,表距为EG,则上式可化为,表目距的差=×(表距+表目距的差),所以AB=×(表距+表目距的差)=+表高.
5.如图,在塔底D的正西方A处测得塔顶的仰角为45°,在塔底D的南偏东60°的B处测得塔顶的仰角为30°,A,B间的距离是84 m,则塔高CD=   m.
答案 12
解析 设塔高CD=x m,
则AD=x m,DB=x m.
由题意得∠ADB=90°+60°=150°,
在△ABD中,利用余弦定理得842=x2+(x)2-2·x2cos 150°,解得x=12(负值舍去),故塔高为12m.
6.(2022·菏泽模拟)轮船A和轮船B在中午12时同时离开海港C,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则下午2时两船之间的距离是    n mile.
答案 70
解析 设两船之间的距离为d,
则d2=502+302-2×50×30×cos 120°
=4 900,
∴d=70,即两船相距70 n mile.
考点一 解三角形的实际应用
角度1 测量距离问题
例1 如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为     m.
答案 900
解析 由已知,得∠QAB=∠PAB-∠PAQ=30°,
又∠PBA=∠PBQ=60°,
∴∠AQB=30°,∴AB=BQ.
又PB为公共
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档