下载此文档

人教版高中数学5 第5讲 第1课时 椭圆及其性质  新题培优练.doc


高中 高一 上学期 数学 人教版

1340阅读234下载7页208 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学5 第5讲 第1课时 椭圆及其性质  新题培优练.doc
文档介绍:
[基础题组练]
1.焦点在x轴上的椭圆+=1(m>0)的焦距为4,则长轴长是(  )
A.3            B.6
C.2 D.
解析:选C.因为椭圆+=1(m>0)的焦点在x轴上,所以m>1,
则a2=m,b2=1,
所以c==,
由题意可得2=4,即m=5.所以a=.
则椭圆的长轴长是2.故选C.
2.(2019·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是,则此椭圆的标准方程是(  )
A.+=1
B.+=1或+=1
C.+=1
D.+=1或+=1
解析:选B.因为a=4,e=,所以c=3,所以b2=a2-c2=16-9=7.因为焦点的位置不确定,
所以椭圆的标准方程是+=1或+=1.
3.(2019·贵州六盘水模拟)已知点F1,F2分别为椭圆C:+=1的左、右焦点,若点P在椭圆C上,且∠F1PF2=60°,则|PF1|·|PF2|=(  )
A.4 B.6
C.8 D.12
解析:选A.由|PF1|+|PF2|=4,|PF1|2+|PF2|2-2|PF1|·|PF2|·cos 60°=|F1F2|2,得3|PF1|·|PF2|=12,所以|PF1|·|PF2|=4,故选A.
4.已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,PF⊥x轴,|PF|=
eq \f(1,4)|AF|,则该椭圆的离心率是(  )
A. B.
C. D.
解析:选B.由题可知点P的横坐标是-c,代入椭圆方程,有+=1,得y=±.又|PF|=|AF|,即=(a+c),化简得4c2+ac-3a2=0,即4e2+e-3=0,解得e=或e=-1(舍去).
5.(2019·辽宁大连模拟)焦点在x轴上的椭圆方程为+=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为(  )
A. B.
C. D.
解析:选C.由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得×2c·b=(2a+2c)·,得a=2c,即e==,故选C.
6.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.
解析:设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r.所以|PC1|+|PC2|=10>|C1C2|=6,即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,得点P的轨迹方程为+=1.
答案:+=1
7.(2019·高考全国卷Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.
解析:不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.
设M(x,y),
则得
所以M的坐标为(3,).
答案:(3,)
8.(2019·安徽滁州模拟)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档