下载此文档

人教版高中数学第3讲 直线、平面平行的判定与性质.doc


高中 高一 上学期 数学 人教版

1340阅读234下载20页989 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第3讲 直线、平面平行的判定与性质.doc
文档介绍:
第3讲 直线、平面平行的判定与性质
一、知识梳理
1.直线与平面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定
定理
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)
因为l∥a,
a⊂α,l⊄α,
所以l∥α
性质
定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)
因为l∥α,
l⊂β,
α∩β=b,
所以l∥b
2.平面与平面平行的判定定理和性质定理
文字语言
图形语言
符号语言
判定
定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)
因为a∥β,
b∥β,a∩b=P,
a⊂α,b⊂α,
所以α∥β
性质
定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
因为α∥β,
α∩γ=a,
β∩γ=b,
所以a∥b
常用结论
1.三种平行关系的转化:
线线平行线面平行面面性质定理平行
线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.
2.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
二、教材衍化
1.平面α∥平面β的一个充分条件是(  )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a⊂α,a∥β
C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.
2.已知正方体ABCD­A1B1C1D1,下列结论中,正确的是________(只填序号).
①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.
解析:连接AD1,BC1,AB1,B1D1,C1D,BD,因为ABC1D1,所以四边形AD1C1B为平行四边形,
故AD1∥BC1,从而①正确;
易证BD∥B1D1,AB1∥DC1,
又AB1∩B1D1=B1,BD∩DC1=D,
故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面.③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.
答案:①②④
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)直线l平行于平面α内的无数条直线,则l∥α.(  )
(2)若直线l在平面α外,则l∥α.(  )
(3)若直线l∥b,直线b⊂α,则l∥α.(  )
(4)若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.(  )
答案:(1)× (2)× (3)× (4)√
二、易错纠偏
(1)对空间平行关系的相互转化条件理解不够;
(2)忽略线面平行、面面平行的条件.
1.如果直线a∥平面α,那么直线a与平面α内的(  )
A.一条直线不相交   
B.两条直线不相交
C.无数条直线不相交
D.任意一条直线都不相交
解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.
2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.
答案:平行四边形
考点一 线面平行的判定与性质(基础型)
以立体几何的定义、公理和定理为出发点,认识和理解空间中直线与平面平行的有关性质与判定定理.
核心素养:直观想象、逻辑推理
角度一 线面平行的证明
在正方体ABCD­A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
【证明】 (1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档