下载此文档

人教版高中数学5 第5讲 利用导数研究不等式的恒成立问题 新题培优练.doc


高中 高二 上学期 数学 人教版

1340阅读234下载4页113 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学5 第5讲 利用导数研究不等式的恒成立问题 新题培优练.doc
文档介绍:
1.已知函数f(x)=x+,g(x)=2x+a,若∀x1∈,∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(  )
A.a≤1 B.a≥1
C.a≤2 D.a≥2
解析:选A.由题意知f(x)min≥g(x)min(x∈[2,3]),因为f(x)min=5,g(x)min=4+a,所以5≥4+a,即a≤1,故选A.
2.(2019·吉林白山联考)设函数f(x)=ex-,若不等式f(x)≤0有正实数解,则实数a的最小值为________.
解析:原问题等价于存在x∈(0,+∞),使得a≥ex(x2-3x+3),令g(x)=ex(x2-3x+3),x∈(0,+∞),则a≥g(x)min,而g′(x)=ex(x2-x).由g′(x)>0可得x∈(1,+∞),由g′(x)<0可得x∈(0,1).据此可知,函数g(x)在区间(0,+∞)上的最小值为g(1)=e.综上可得,实数a的最小值为e.
答案:e
3.(2019·武汉市调研测试)已知函数f(x)=(x-1)ln x+ax(a∈R).
(1)在a=0时,求f(x)的单调区间;
(2)若f(x)>0在(0,+∞)上恒成立,求实数a的取值范围.
解:(1)a=0时,f(x)=(x-1)ln x,
f′(x)=ln x+(x-1)·=ln x-+1,设g(x)=ln x-+1,
则g′(x)=>0,所以g(x)在(0,+∞)上单调递增,而g(1)=0,
所以x∈(0,1)时,g(x)<0,即f′(x)<0,
x∈(1,+∞)时,g(x)>0,即f′(x)>0,
所以f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).
(2)由(x-1)ln x+ax>0,得-ax<(x-1)ln x,而x>0,
所以-a<=ln x-.
记h(x)=ln x-,则h′(x)=-=,
设m(x)=ln x+x-1(x>0),
显然m(x)在(0,+∞)上单调递增,而m(1)=0,
所以x∈(0,1)时,m(x)<0,h′(x)<0,h(x)单调递减,
x∈(1,+∞)时,m(x)>0,h′(x)>0,h(x)单调递增,
所以h(x)min=h(1)=0.
所以-a<0,所以a>0,即实数a的取值范围是(0,+∞).
4.已知函数f(x)=ax-ex(a∈R),g(x)=.
(1)求函数f(x)的单调区间;
(2)∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求a的取值范围.
解:(1)因为f′(x)=a-ex,x∈R.
当a≤0时,f′(x)<0,f(x)在R上单调递减;
当a>0时,令f′(x)=0得x=ln a.
由f′(x)>0得f(x)的单调递增区间为(-∞,ln a);
由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).
(2)因为∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex,
则ax≤,即a≤.
设h(x)=,则问题转化为a≤()max,
由h′(x)=,
令h′(x)=0,则x=.
当x在区间(0,+∞)内变化时,h′(x),h(x)的变化情况如下表:
x
(0,)
(,+∞)
h′(x)

0

h(x)
单调递增
极大值
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档