下载此文档

人教版高中数学6 第6讲 利用导数研究函数的零点问题 新题培优练.doc


高中 高二 上学期 数学 人教版

1340阅读234下载4页123 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学6 第6讲 利用导数研究函数的零点问题 新题培优练.doc
文档介绍:
1.(2019·江西赣州模拟)若函数f(x)=aex-x-2a有两个零点,则实数a的取值范围是(  )
A.      B.
C. D.
解析:选D.函数f(x)=aex-x-2a的导函数f′(x)=aex-1.当a≤0时,f′(x)≤0恒成立,函数f(x)在R上单调递减,不可能有两个零点;当a>0时,令f′(x)=0,得x=ln,函数f(x)在上单调递减,在上单调递增,所以f(x)的最小值为f=1-ln-2a=1+ln a-2a.令g(a)=1+ln a-2a(a>0),则g′(a)=-2.当a∈时,g(a)单调递增;当a∈时,g(a)单调递减,所以g(a)max=g=-ln 2<0,所以f(x)的最小值为f<0,函数f(x)=aex-x-2a有两个零点.综上所述,实数a的取值范围是(0,+∞),故选D.
2.已知函数f(x)=3ln x-x2+2x-3ln 3-.则方程f(x)=0的解的个数是________.
解析:因为f(x)=3ln x-x2+2x-3ln 3-,
所以f′(x)=-x+2=
=,
当x∈(0,3)时,f′(x)>0,f(x)单调递增,
当x∈(3,+∞)时,f′(x)<0,f(x)单调递减,
当x→0时,f(x)→-∞,当x→+∞时,f(x)→-∞,
所以f(x)max=f(3)=3ln 3-+6-3ln 3-=0,
所以方程f(x)=0只有一个解.
答案:1
3.(2018·高考全国卷Ⅱ)已知函数f(x)=ex-ax2.
(1)若a=1,证明:当x≥0时,f(x)≥1;
(2)若f(x)在(0,+∞)只有一个零点,求a.
解:(1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.
设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.
当x≠1时,g′(x)<0,所以g(x)在(0,+∞)单调递减.而g(0)=0,故当x≥0时,g(x)≤0,
即f(x)≥1.
(2)设函数h(x)=1-ax2e-x.
f(x)在(0,+∞)只有一个零点当且仅当h(x)在(0,+∞)只有一个零点.
(ⅰ)当a≤0时,h(x)>0,h(x)没有零点;
(ⅱ)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,
h′(x)>0.
所以h(x)在(0,2)单调递减,在(2,+∞)单调递增.
故h(2)=1-是h(x)在[0,+∞)的最小值.
①若h(2)>0,即a<,h(x)在(0,+∞)没有零点;
②若h(2)=0,即a=,h(x)在(0,+∞)只有一个零点;
③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)有一个零点.
由(1)知,当x>0时,ex>x2,所以
h(4a)=1-=1->1-=1->0.
故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.
综上,f(x)在(0,+∞)只有一个零点时,a=.
4.(2019·南昌市第一次模拟测试)已知函数f(x)=ex·(ln x-ax+a+b)(e为自然对数的底数),a,b∈R,直线y=x是曲线y=f(x)在x=1处的切线.
(1)求a,b的值.
(
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档