下载此文档

人教版高中数学9 第8讲 曲线与方程 新题培优练.doc


高中 高二 上学期 数学 人教版

1340阅读234下载8页283 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学9 第8讲 曲线与方程 新题培优练.doc
文档介绍:
[基础题组练]
1.方程(x-y)2+(xy-1)2=0表示的曲线是(  )
A.一条直线和一条双曲线
B.两条双曲线
C.两个点
D.以上答案都不对
解析:选C.(x-y)2+(xy-1)2=0⇔
故或
2.如图所示,在平面直角坐标系xOy中,A(1,0),B(1,1),C(0,1),映射f将xOy平面上的点P(x,y)对应到另一个平面直角坐标系uO′v上的点P′(2xy,x2-y2),则当点P沿着折线A­B­C运动时,在映射f的作用下,动点P′的轨迹是(  )
解析:选D.当P沿AB运动时,x=1,设P′(x′,y′),则(0≤y≤1),故y′=1-(0≤x′≤2,0≤y′≤1).当P沿BC运动时,y=1,则(0≤x≤1),所以y′=-1(0≤x′≤2,-1≤y′≤0),由此可知P′的轨迹如D项图象所示,故选D.
3.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若2=λ·,其中λ为常数,则动点M的轨迹不可能是(  )
A.圆           B.椭圆
C.抛物线 D.双曲线
解析:选C.以AB所在直线为x轴,AB的中垂线为y轴,建立坐标系,设M(x,y),A(-a,0),B(a,0),则N(x,0).
因为2=λ·,
所以y2=λ(x+a)(a-x),即λx2+y2=λa2,
当λ=1时,轨迹是圆;
当λ>0且λ≠1时,轨迹是椭圆;
当λ<0时,轨迹是双曲线;
当λ=0时,轨迹是直线.
综上,动点M的轨迹不可能是抛物线.
4.设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,=+,则点M的轨迹方程为(  )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选A.设M(x,y),A(x0,0),B(0,y0),
由=+,得(x,y)=(x0,0)+(0,y0),
则解得
由|AB|=5,得+=25,
化简得+=1.
5.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点.若=2,且·=1,则点P的轨迹方程是(  )
A.x2+3y2=1(x>0,y>0)
B.x2-3y2=1(x>0,y>0)
C.3x2-y2=1(x>0,y>0)
D.3x2+y2=1(x>0,y>0)
解析:选A.设A(a,0),B(0,b),a>0,b>0.由=2,得(x,y-b)=2(a-x,-y),即a=x>0,b=3y>0.点Q(-x,y),故由·=1,得(-x,y)·(-a,b)=1,即ax+by=1.将a=x,b=3y代入ax+by=1,得所求的轨迹方程为x2+3y2=1(x>0,y>0).
6.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为-
,则点P的轨迹方程是________.
解析:由=-,知x+2y=-5,即x+2y+5=0.
答案:x+2y+5=0
7.在平面直角坐标系中,O为坐标原点,A(1,0),B(2,2),若点C满足=+t(-),其中t∈R,则点C的轨迹方程是________.
解析:设C(x,y),则=(x,y),+t(-)=(1+t,2t),所以消去参数t得点C的轨迹方程为
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档