第9讲 函数与方程
最新考纲
考向预测
结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
命题趋势
利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根)的存在情况求相关参数的范围,是高考的热点,题型以选择、填空题为主,也可和导数等知识交汇出现解答题,中高档难度.
核心素养
直观想象、逻辑推理
1.函数零点
(1)定义:对于函数y=f(x)(x∈D),我们把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.
(2)三个等价关系
(3)存在性定理
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+
bx+c
(a>0)
的图象
与x轴
的交点
(x1,0),(x2,0)
(x1,0)
无交点
零点
x1,x2
x1
无
常用结论
有关函数零点的三个结论
(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.
(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.
(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.
常见误区
1.函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图象与x轴交点的横坐标.
2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象等综合考虑.
1.判断正误(正确的打“√”,错误的打“×”)
(1)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( )
(2)只要函数有零点,我们就可以用二分法求出零点的近似值.( )
(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( )
(4)若函数f(x)在(a,b)上连续单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.( )
答案:(1)× (2)× (3)√ (4)√
2.(易错题)(多选)下列说法中正确的是( )
A.函数f(x)=x+1的零点为(-1,0)
B.函数f(x)=x+1的零点为-1
C.函数f(x)的零点,即函数f(x)的图象与x轴的交点
D.函数f(x)的零点,即函数f(x)的图象与x轴的交点的横坐标
解析:选BD.根据函数零点的定义,可知f(x)=x+1的零点为-1.
函数y=f(x)的零点,即函数y=f(x)的图象与x轴的交点的横坐标,因此B,D正确,A,C错误.
3.函数f(x)=ln x-的零点所在的大致范围是( )
A.(1,2) B.(2,3)
C.和(3,4) D.(4,+∞)
解析:选B.易知f(x)为增函数,由f(2)=ln 2-1<0,f(3)=ln 3->0,得f(2)·f(3)<0.故选B.
4.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:
x
1
2
3
4
5
6
y
124.4
33
-74
24.5
-36.7
-123.6
则函数y=f(x)在区间[1,6]上的零点至少有________个.
解析:依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据零点存在性定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.
答案:3
5.已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),使得f(x0)=0,则实数a的取值范围是________.
解析:依题意可得f(-1)·f(1)<0,即(-2a-a+3)(2a-a+3)<0,解得a<-3或a>1.
答案:(-∞,-3)∪(1,+∞)
函数零点所在区间的判断
(一题多解)函数f(x)=log3x+x-2的零点所在的区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
【解析】 方法一(定理法):函数f(x)=log3x+x-2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=-1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x-2有唯一零点,且零点在区间(1,2)内.
方法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h