第1讲 函数及其表示
一、选择题
1.(2017·郑州质检)函数f(x)=log2(x2+2x-3)的定义域是( )
A.[-3,1] B.(-3,1)
C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)
解析 使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,
所以f(x)的定义域为(-∞,-3)∪(1,+∞).
答案 D
2.(2017·石家庄一模)已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sin x,当x∈[2,+∞)时,f(x)=log2x,则f+f(4)等于( )
A.-+2 B.1
C.3 D.+2
解析 因为f=f=2sin=,f(4)=log24=2,所以f+f(4)=+2.
答案 D
3.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=( )
A.x+1 B.2x-1
C.-x+1 D.x+1或-x-1
解析 设f(x)=kx+b(k≠0),又f[f(x)]=x+2,
得k(kx+b)+b=x+2,即k2x+kb+b=x+2.
∴k2=1,且kb+b=2,解得k=b=1.
答案 A
4.(2017·湖南衡阳八中一模)f(x)=则f=( )
A.-2 B.-3 C.9 D.-9
解析 ∵f=log3=-2,
∴f=f(-2)==9.
答案 C
5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( )
A.y= B.y=
C.y= D.y=
解析 取特殊值法,若x=56,则y=5,排除C,D;若x=57,则y=6,排除A,选B.
答案 B
6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )
A.y=x B.y=lg x C.y=2x D.y=
解析 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lg x的值域为R,排除B,故选D.
答案 D
7.(2016·江苏卷)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.
若f=f,则f(5a)的值是( )
A. B. C.- D.
解析 由题意f=f=-+a,
f=f==,
∴-+a=,则a=,
故f(5a)=f(3)=f(-1)=-1+=-.
答案 C
8.(2017·铜陵一模)设P(x0,y0)是函数f(x)图象上任意一点,且y≥x,则f(x)的解析式可以是( )
A.f(x)=x- B.f(x)=ex-1
C.f(x)=x+ D.f(x)=tan x
解析 对于A项,当x=1,f(1)=0,此时02≥12不成立.对于B项,取x=-1,f(-1)=-1,此时≥(-1)2不成立.在D项中,f=tanπ=1,此时12≥不成立.
∴A,B,D均不正确.选C.事实上,在C项中,对∀x0∈R,
y=有