下载此文档

人教版高中数学第1讲 平面向量的概念及线性运算.doc


高中 高二 上学期 数学 人教版

1340阅读234下载14页991 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第1讲 平面向量的概念及线性运算.doc
文档介绍:
第1讲 平面向量的概念及线性运算
一、知识梳理
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
[注意] (1)向量不同于数量,向量不仅有大小,而且还有方向.
(2)任意向量a的模都是非负实数,即|a|≥0.
2.向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)
减法
求a与b的相反向量-b的和的运算
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
|λ a|=|λ||a|,当λ>0时,λa与a的方向相同;
当λ<0时,λa与 a的方向相反;
当λ=0时,
λ a=0
λ(μ a)=(λμ)a;
(λ+μ)a=λa+μ_a;
λ(a+b)=λa+λb
3.向量共线定理
向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.
常用结论
1.两特殊向量
(1)零向量和单位向量是两个特殊的向量.它们的模是确定的,但方向不确定.
(2)非零向量a的同向单位向量为.
2.几个重要结论
(1)若P为线段AB的中点,O为平面内任一点,则=(+).
(2)=λ+μ(λ,μ为实数),若点A,B,C共线,则λ+μ=1.
(3)若G为△ABC的重心,则有
①++=0;②=(+).
二、教材衍化
1.已知▱ABCD的对角线AC和BD相交于点O,且=a,=b,则=________,=________.(用a,b表示)
解析:如图,==-=b-a,=-=--=-a-b.
答案:b-a -a-b
2.在平行四边形ABCD中,若|+|=|-|,则四边形ABCD的形状为________.
解析:如图,因为+=,-=,所以||=||.由对角线长相等的平行四边形是矩形可知,四边形ABCD是矩形.
答案:矩形
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.(  )
(2)若两个向量共线,则其方向必定相同或相反.(  )
(3)若向量与向量是共线向量,则A,B,C,D四点在一条直线上.(  )
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.(  )
答案:(1)× (2)× (3)× (4)√
二、易错纠偏
(1)对向量共线定理认识不准确;
(2)向量的减法忽视两向量的方向关系致误.
1.对于非零向量a,b,“a+b=0”是“a∥b”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.若a+b=0,则a=-b,所以a∥b.若a∥b,则a+b=0不一定成立.故前者是后者的充分不必要条件.
2.点D是△ABC的边AB上的中点,则向量=(  )
A.-+ B.--
C.- D.+
答案:A
考点一 平面向量的有关概念(基础型)
了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.
核心素养:数学抽象
1.给出下列命题:
①向量的长度与向量的长度相等;
②向量a与b平行,则a与b的方向相同或相反;
③|a|+|b|=|a+b|⇔a与b方向相同;
④若非零向量a与非零向量b的方向相同或相反,则a+b与a,b之一的方向相同.
其中叙述错误的命题的个数为(  )
A.1 B.2
C.3 D.4
解析:选C.对于②:当a=0时,不成立;对于③:当a,b之一为零向量时,不成立;对于④:当a+b=0时,a+b的方向是任意的,它可以与a,b的方向都不相同.故选C.
2.设a,b都是非零向量,下列四个条件中,使=成立的充分条件是(  )
A.a=-b B.a∥b
C.a=2b D.a∥b且|a|=|b|
解析:选C.因为向量的方向与向量a相同,向量的方向与向量b相同,且=,所以向量a与向量b方向相同,故可排除选项A,B,D.
当a=2b时,==,故a=2b是=成立的充分条件.
3.下列与共线向量有关的命题:
①相反向量就是方向相反的向量;
②a与b同向,且|a|>|b|,则a>b;
③两个向量平行是这两个向量相等的必
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档