下载此文档

人教版高中数学第1讲 数列的概念及简单表示法0.doc


高中 高二 上学期 数学 人教版

1340阅读234下载5页364 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第1讲 数列的概念及简单表示法0.doc
文档介绍:
第1讲 数列的概念及简单表示法
一、选择题
1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an等于(  )
A. B.cos
C.cos π D.cos π
解析 令n=1,2,3,…,逐一验证四个选项,易得D正确.
答案 D
2.数列,-,,-,…的第10项是(  )
A.- B.- C.- D.-
解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{an}的通项公式an=(-1)n+1·,故a10=-.
答案 C
3.(2017·保定调研)在数列{an}中,已知a1=1,an+1=2an+1,则其通项公式an=(  )
A.2n-1 B.2n-1+1
C.2n-1 D.2(n-1)
解析 法一 由an+1=2an+1,可求a2=3,a3=7,a4=15,…,验证可知an=2n-1.
法二 由题意知an+1+1=2(an+1),∴数列{an+1}是以2为首项,2为公比的等比数列,∴an+1=2n,∴an=2n-1.
答案 A
4.数列{an}的前n项积为n2,那么当n≥2时,an等于(  )
A.2n-1 B.n2
C. D.
解析 设数列{an}的前n项积为Tn,则Tn=n2,
当n≥2时,an==.
答案 D
5.数列{an}满足an+1+an=2n-3,若a1=2,则a8-a4=(  )
A.7 B.6 C.5 D.4
解析 依题意得(an+2+an+1)-(an+1+an)=[2(n+1)-3]-(2n-3),即an+2-an=2,所以a8-a4=(a8-a6)+(a6-a4)=2+2=4.
答案 D
二、填空题
6.若数列{an}满足关系an+1=1+,a8=,则a5=________.
解析 借助递推关系,则a8递推依次得到a7=,a6=,a5=.
答案 
7.已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),则an=________.
解析 当n≥2时,an=Sn-Sn-1=2n+1,
当n=1时,a1=S1=4≠2×1+1,
因此an=
答案 
8.(2017·北京海淀期末)已知数列{an}的前n项和为Sn,且an≠0(n∈N*),又anan+1=Sn,则a3-a1=________.
解析 因为anan+1=Sn,
所以令n=1得a1a2=S1=a1,即a2=1,
令n=2,得a2a3=S2=a1+a2,即a3=1+a1,所以a3-a1=1.
答案 1
三、解答题
9.数列{an}的通项公式是an=n2-7n+6.
(1)这个数列的第4项是多少?
(2)150是不是这个数列的项?若是这个数列的项,它是第几项?
(3)该数列从第几项开始各项都是正数?
解 (1)当n=4时,a4=42-4×7+6=-6.
(2)令an=150,即n2-7n+6=150,解得n=16或n=-9(舍去),即150是这个数列的第16项.
(3)令an=n2-7n+6>0,解得n>6或n<1(舍).
∴从第7项起各项都是正数.
10.已知数列{an}中,a1=1,前n项和Sn=an.
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档