第1讲 直线的方程
一、选择题
1.直线x-y+a=0(a为常数)的倾斜角为( )
A.30° B.60° C.120° D.150°
解析 直线的斜率为k=tan α=,又因为0°≤α<180°,所以α=60°.
答案 B
2.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则直线l的方程是( )
A.x+y-2=0 B.x-y+2=0
C.x+y-3=0 D.x-y+3=0
解析 圆x2+(y-3)2=4的圆心为点(0,3),又因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l:y-3=x-0,化简得x-y+3=0.
答案 D
3.直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A. B.
C.∪ D.∪
解析 ∵直线的斜率k=-,∴-1≤k<0,则倾斜角的范围是.
答案 B
4.(2017·高安市期中)经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l的方程是( )
A.6x-4y-3=0 B.3x-2y-3=0
C.2x+3y-2=0 D.2x+3y-1=0
解析 因为抛物线y2=2x的焦点坐标为,直线3x-2y+5=0的斜率为,所以所求直线l的方程为y=,化为一般式,得6x-4y-3=0.
答案 A
5.(2016·广州质检)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( )
A. B.- C.- D.
解析 依题意,设点P(a,1),Q(7,b),则有解得
a=-5,b=-3,从而可知直线l的斜率为=-.
答案 B
6.(2017·深圳调研)在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是( )
解析 当a>0,b>0时,-a<0,-b<0.选项B符合.
答案 B
7.(2016·衡水一模)已知直线l的斜率为,在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
A.y=x+2 B.y=x-2
C.y=x+ D.y=-x+2
解析 ∵直线x-2y-4=0的斜率为,
∴直线l在y轴上的截距为2,∴直线l的方程为y=x+2,故选A.
答案 A
8.(2017·福州模拟)若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为( )
A.1 B.2 C.4 D.8
解析 ∵直线ax+by=ab(a>0,b>0)过点(1,1),
∴a+b=ab,即+=1,
∴a+b=(a+b)=2++≥2+2=4,
当且仅当a=b=2时上式等号成立.
∴直线在x轴,y轴上的截距之和的最小值为4.
答案 C
二、填空题
9.已知三角形的三个顶点A(-5,0,),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________.
解析 BC的中点坐标为,∴BC边上中线所在直线方程为=,即x+13y+5=0.
答案 x+13y+5=0
10.若直线l的斜率为k,倾斜角为α,而α∈∪,则k的取值范围是________.