[基础题组练]
1.如图是①y=xa;②y=xb;③y=xc在第一象限的图象,则a,b,c的大小关系为( )
A.c<b<a B.a<b<c
C.b<c<a D.a<c<b
解析:选D.根据幂函数的性质,可知选D.
2.若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( )
A.在(-∞,2)上递减,在[2,+∞)上递增
B.在(-∞,3)上递增
C.在[1,3]上递增
D.单调性不能确定
解析:选A.由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2)上是递减的,在[2,+∞)上是递增的.
3.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则a的值为( )
A.-1 B.0
C.1 D.-2
解析:选D.函数f(x)=-x2+4x+a的对称轴为直线x=2,开口向下,f(x)=-x2+4x+a在[0,1]上单调递增,则当x=0时,f(x)的最小值为f(0)=a=-2.
4.(多选)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0),…,求证:这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数可能具有的性质是( )
A.在x轴上截得的线段的长度是2
B.与y轴交于点(0,3)
C.顶点是(-2,-2)
D.过点(3,0)
解析:选ABD.由已知得解得b=-4a,c=3a,所以二次函数为y=a(x2-4x+3),其顶点的横坐标为2,所以顶点一定不是(-2,-2),故选ABD.
5.(多选)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则函数值
f(-1),f(1),f(2),f(5)中,最小的可能是( )
A.f(-1) B.f(1)
C.f(2) D.f(5)
解析:选ACD.因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).
6.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为________.
解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),
所以3=9a,即a=.
所以y=(x-3)2=x2-2x+3.
答案:y=x2-2x+3
7.(2020·甘肃兰州一中月考)已知函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x∈(0,+∞)上递减,则实数m=________.
解析:根据幂函数的定义和性质,得m2-m-1=1.
解得m=2或m=-1,
当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;
当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,
所以m=2.
答案:2
8.设函数f(x)=mx2-mx-1,若对于x∈R,f(x)<0恒