第4节 复 数
考试要求 1.理解复数的基本概念.2.理解复数相等的充要条件.3.了解复数的代数表示法及其几何意义.4.能进行复数代数形式的四则运算.5.了解复数代数形式的加、减运算的几何意义.
1.复数的有关概念
(1)定义:我们把集合C={a+bi|a,b∈R}中的数,即形如a+bi(a,b∈R)的数叫做复数,其中a叫做复数z的实部,b叫做复数z的虚部(i为虚数单位).
(2)分类:
满足条件(a,b为实数)
复数的
分类
a+bi为实数⇔b=0
a+bi为虚数⇔b≠0
a+bi为纯虚数⇔a=0且b≠0
(3)复数相等:a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).
(4)共轭复数:a+bi与c+di共轭⇔a=c,b=-d(a,b,c,d∈R).
(5)模:向量的模叫做复数z=a+bi的模,记作|a+bi|或|z|,即|z|=|a+bi|=(a,b∈R).
2.复数的几何意义
复数z=a+bi与复平面内的点Z(a,b)及平面向量=(a,b)(a,b∈R)是一一对应关系.
3.复数的运算
(1)运算法则:设z1=a+bi,z2=c+di,a,b,c,d∈R.
(2)几何意义:
复数加、减法可按向量的平行四边形或三角形法则进行.
如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加、减法的几何意义,即=+,=-.
1.i的乘方具有周期性
i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+i4n+1+i4n+2+i4n+3=0,n∈N*.
2.(1±i)2=±2i,=i;=-i.
3.复数的模与共轭复数的关系
z·=|z|2=||2.
1.思考辨析(在括号内打“√”或“×”)
(1)复数z=a+bi(a,b∈R)中,虚部为bi.( )
(2)复数中有相等复数的概念,因此复数可以比较大小.( )
(3)原点是实轴与虚轴的交点.( )
(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )
答案 (1)× (2)× (3)√ (4)√
解析 (1)虚部为b;(2)虚数不可以比较大小.
2.(2021·北京卷)在复平面内,复数z满足(1-i)·z=2,则z=( )
A.1 B.i C.1-i D.1+i
答案 D
解析 由题意可得z===1+i.
3.(2021·新高考Ⅱ卷)复数在复平面内对应的点所在的象限为( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 A
解析 ===,所以该复数在复平面内对应的点为,该点在第一象限.
4.(2021·上海卷)已知z=1-3i,则|-i|=________.
答案
解析 ∵z=1-3i,∴=1+3i,∴-i=1+3i-i=1+2i,∴|-i|==.
5.已知a+bi(a,b∈R)是的共轭复数,则a+b=________.
答案 1
解析 由==-i,得a+bi=i,即a=0,b=1,则a+b=1.
6.(易错题)i为虚数单位,若复数(1+mi)(i+2)是纯虚数,则实数m等于________.
答案 2
解析 因为(1+mi)(i+2)=2-m+(1+2m)i是纯虚数,所以2-m=0,且1+2m≠0,解得m=2.
考点一 复数的概念
1.(2022·北京朝阳区一模)如果复数(b∈R)的实部与虚部相等,那么b=( )
A.-2 B.1 C.2 D.4
答案 A
解析 ==b-2i,所以实部为b,虚部为-2,故b的值为-2,故选A.
2.(多选)若复数z=,其中i为虚数单位,则下列结论正确的是( )
A.z的虚部为-1
B.|z|=
C.z2为纯虚数
D.z的共轭复数为-1-i
答案 ABC
解析 z====1-i,对于A,z的虚部为-1,正确;
对于B,模长|z|=,正确;
对于C,因为z2=(1-i)2=-2i,故z2为纯虚数,正确;
对于D,z的共轭复数为1+i,错误.
3.(多选)设z1,z2是复数,则下列命题中的真命题是( )
A.若|z1-z2|=0,则1=2
B.若z1=2,则1=z2
C.若|z1|=|z2|,则z1·1=z2·2
D.若|z1|=|z2|,则z=z
答案 ABC
解析 对于A,若|z1-z2|=0,则z1-z2=0,z1=z2,所以1=2为真;
对于B,若z1=2,则z1和z2互为共轭复数,所以1=z2为真;
对于C,设z1=a1+b1i,z2=a2+b2i,a1,b1,a2,b2∈R,
若|z1|=|z2|,则=,
即