下载此文档

人教版高中数学第6讲 双曲线.doc


高中 高二 上学期 数学 人教版

1340阅读234下载17页617 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第6讲 双曲线.doc
文档介绍:
第6讲 双曲线
一、知识梳理
1.双曲线的定义
条件
结论1
结论2
平面内的动点M与平面内的两个定点F1,F2
M点的
轨迹为
双曲线
F1、F2为双曲线的焦点
|F1F2|为双曲线的焦距
||MF1|-|MF2||=2a
2a<|F1F2|
[注意] (1)当2a=|F1F2|时,P点的轨迹是两条射线;
(2)当2a>|F1F2|时,P点不存在.
2.双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图形
性质
范围
x≥a或x≤-a,y∈R
y≤-a或y≥a,x∈R
对称性
对称轴:坐标轴,对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长
a、b、c的关系
c2=a2+b2(c>a>0,c>b>0)
3.等轴双曲线
实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=.
常用结论
1.双曲线中的几个常用结论
(1)双曲线的焦点到其渐近线的距离为b.
(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为,异支的弦中最短的为实轴,其长为2a.
(4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,则直线PA与PB的斜率之积为.
2.巧设双曲线方程
(1)与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
(2)过已知两个点的双曲线方程可设为mx2+ny2=1(mn<0).
二、教材衍化
1.双曲线-=-1的实轴长________,离心率________,渐近线方程________.
答案:10  y=±x
2.经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________.
解析:设双曲线的方程为-=±1(a>0),
把点A(3,-1)代入,得a2=8(舍负),
故所求方程为-=1.
答案:-=1
3.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线方程为________.
解析:设要求的双曲线方程为-=1(a>0,b>0),由椭圆+=1,得焦点为(±1,0),顶点为(±2,0).所以双曲线的顶点为(±1,0),焦点为(±2,0).所以a=1,c=2,所以b2=c2-a2=3,所以双曲线标准方程为x2-=1.
答案:x2-=1
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于常数的点的轨迹是双曲线.(  )
(2)椭圆的离心率e∈(0,1),双曲线的离心率e∈(1,+∞).(  )
(3)方程-=1(mn>0)表示焦点在x轴上的双曲线.(  )
(4)等轴双曲线的渐近线互相垂直,离心率等于.(  )
答案:(1)× (2)√ (3)× (4)√
二、易错纠偏
(1)忽视双曲线定义的条件致误;
(2)忽视双曲线焦点的位置致误.
1.平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是________.
解析:由|PF1|-|PF2|=6<|F1F2|=8,得a=3,又c=4,则b2=c2-a2=7,所以所求点的轨迹是双曲线-=1的下支.
答案:双曲线-=1的下支
2.坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的斜率为,则双曲线的离心率为________.
解析:若双曲线的焦点在x轴上,
设双曲线的方程为-=1,
则渐近线的方程为y=±x,
由题意可得=,b=a,
可得c=2a,则e==2;
若双曲线的焦点在y轴上,
设双曲线的方程为-=1,
则渐近线的方程为y=±x,
由题意可得=,a=b,
可得c=a,则e=.
综上可得e=2或e=.
答案:2或
考点一 双曲线的定义(基础型)
了解双曲线的定义及几何图形.
核心素养:数学抽象
(1)(2020·河南非凡联盟4月联考)已知双曲线C:-=1(a>0)的左、右焦点分别为F1,F2,一条渐近线与直线4x+3y=0垂直,点M在C上,且|MF2|=6,则|
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档