下载此文档

人教版高中数学第7讲 高效演练分层突破.doc


高中 高二 上学期 数学 人教版

1340阅读234下载7页211 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第7讲 高效演练分层突破.doc
文档介绍:
[基础题组练]
1.已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点坐标为(  )
A.(-1,0) B.(1,0)
C.(0,-1) D.(0,1)
解析:选B.抛物线y2=2px(p>0)的准线为x=-且过点(-1,1),故-=-1,解得p=2.所以抛物线的焦点坐标为(1,0).
2.(2020·湖南省湘东六校联考)抛物线的顶点在原点,焦点在y轴上,其上的点P(m,-3)到焦点的距离为4,则抛物线方程为(  )
A.x2=8y B.x2=4y
C.x2=-4y D.x2=-8y
解析:选C.依题意,设抛物线的方程为x2=-2py(p>0),则+3=4,所以p=2,所以抛物线的方程为x2=-4y,故选C.
3.(2020·甘肃张掖第一次联考)已知抛物线C1:x2=2py(y>0)的焦点为F1,抛物线C2:y2=(4p+2)x的焦点为F2,点P在C1上,且|PF1|=,则直线F1F2的斜率为(  )
A.- B.-
C.- D.-
解析:选B.因为|PF1|=,
所以+=,解得p=.
所以C1:x2=y,C2:y2=4x,F1,F2(1,0),
所以直线F1F2的斜率为=-.故选B.
4. (应用型)(2020·河北邯郸一模)位于德国东部萨克森州的莱科勃克桥有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5 m,跨径为12 m,则桥形对应的抛物线的焦点到准线的距离为(  )
A. m B. m
C. m D. m
解析:选D.建立如图所示的平面直角坐标系.
设抛物线的解析式为x2=-2py,p>0,
因为抛物线过点(6,-5),所以36=10p,可得p=,
所以桥形对应的抛物线的焦点到准线的距离为 m.故选D.
5.(2020·河北衡水三模)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若A,B,C三点坐标分别为(1,2),(x1,y1),(x2,y2),且||+||+||=10,则x1+x2=(  )
A.6          B.5
C.4 D.3
解析:选A.根据抛物线的定义,知||,||,||分别等于点A,B,C到准线x=-1的距离,所以由||+||+||=10,可得2+x1+1+x2+1=10,即x1+x2=6.故选A.
6.在直角坐标系xOy中,有一定点M(-1,2),若线段OM的垂直平分线过抛物线x2=2py(p>0)的焦点,则该抛物线的准线方程是________.
解析:依题意可得线段OM的垂直平分线的方程为2x-4y+5=0,把焦点坐标代入可求得p=,所以准线方程为y=-.
答案:y=-
7.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为________.
解析:由题意,不妨设抛物线方程为y2=2px(p>0),由|AB|=4,|DE|=2,可取A,D,设O为坐标原点,由|OA|=|OD|,
得+8=+5,得p=4.
答案:4
8.(2020·湖南师大附中月考改编)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档