下载此文档

2024年高考数学一轮复习(人教版) 第10章 §10.8 概率与统计的综合问题.docx


高中 高二 上学期 数学 人教版

1340阅读234下载17页309 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第10章 §10.8 概率与统计的综合问题.docx
文档介绍:
§10.8 概率与统计的综合问题
题型一 频率分布直方图与分布列的综合问题
例1 2022年是中国共产主义青年团成立100周年,为引导和带动青少年重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),…,[90,100],统计结果如图所示.
(1)试估计这100名学生得分的平均数;
(2)从样本中得分不低于70分的学生中,用比例分配的分层随机抽样的方法选取11人进行座谈,若从座谈名单中随机抽取3人,记其得分在[90,100]的人数为ξ,试求ξ的分布列和均值;
(3)以样本估计总体,根据频率分布直方图,可以认为参加知识竞赛的学生的得分X近似地服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,经计算s2=42.25.现从所有参加知识竞赛的学生中随机抽取500人,若这500名学生的得分相互独立,试问得分高于77分的人数最有可能是多少?
参考数据:若随机变量X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3.
解 (1)估计这100名学生得分的平均数为10×(45×0.010+55×0.015+65×0.020+75×0.030+85×0.015+95×0.010)=70.5.
(2)从样本中得分不低于70分的学生中,用比例分配的分层随机抽样的方法选取11人进行座谈,其中得分在[90,100]的人数为×11=2.
若从座谈名单中随机抽取3人,记其得分在[90,100]的人数为ξ,则ξ的所有可能取值为0,1,2.
P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==,
则ξ的分布列为
ξ
0
1
2
P
所以E(ξ)=0×+1×+2×=.
(3)由题意知,μ=70.5,σ2=s2=42.25,σ=6.5.
P(X>77)=P(X>μ+σ)=≈0.158 65,
所以这500名学生得分高于77分的人数最有可能为0.158 65×500≈79.
思维升华 高考常将频率分布直方图与分布列等交汇在一起进行考查,解题时要正确理解频率分布直方图,能利用频率分布直方图正确计算出各组数据.概率问题以计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来.
跟踪训练1 (2023·济南模拟)从某企业的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量结果制成如图所示的频率分布直方图.
(1)求这100件产品质量指标值的样本平均数(同一组数据用该区间的中点值作代表);
(2)已知某用户从该企业购买了3件该产品,用X表示这3件产品中质量指标值位于[35,45]内的产品件数,用频率估计概率,求X的分布列.
解 (1)由已知得,=10×0.015×10+20×0.040×10+30×0.025×10+40×0.020×10=25.
(2)因为购买一件产品,其质量指标值位于[35,45]内的概率为0.2,
所以X~B(3,0.2),因为X的所有可能取值为0,1,2,3,
所以P(X=0)=(1-0.2)3=0.512,
P(X=1)=C×0.2×(1-0.2)2=0.384,
P(X=2)=C×0.22×(1-0.2)=0.096,
P(X=3)=0.23=0.008,
所以X的分布列为
X
0
1
2
3
P
0.512
0.384
0.096
0.008
题型二 回归模型与分布列的综合问题
例2 (2022·德州模拟)工信部发布的《“十四五”促进中小企业发展规划》中明确提出建立“百十万千”的中小企业梯度培育体系,引导中小企业走向“专精特新”“小巨人”“隐形冠军”的发展方向,“专精特新”是指具备专业化、精细化、特色化、新颖化优势的中小企业.下表是某地2017-2021年新增企业数量的有关数据:
年份(年)
2017
2018
2019
2020
2021
年份代码(x)
1
2
3
4
5
新增企业数量(y)
8
17
29
24
42
(1)请根据表中所给的数据,求出y关于x的经验回归方程,并预测2023年此地新增企业的数量;
(2)若在此地进行考察,考察企业中有4个为“专精特新”企业,3个企业中为普通企业,现从这7个企业中随机抽取3个,用X表示抽取的3个企业中为“专精特新”企业的个数,求随机变量X的分布列与均值.
参考公式:经验回归方程=+x中,斜率和截距最小二乘估计公式分别为=,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档