下载此文档

人教2021年高考数学精选考点专项突破题集 专题5.2 立体几何中的平行与垂直(教师版含解析).docx


高中 高二 上学期 数学 人教版

1340阅读234下载22页1.58 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教2021年高考数学精选考点专项突破题集 专题5.2 立体几何中的平行与垂直(教师版含解析).docx
文档介绍:
专题5.2 立体几何中的平行与垂直
一、单选题
1、(2020届山东省潍坊市高三上期中)m、n是平面外的两条直线,在m∥的前提下,m∥n是n∥的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】A
【解析】
,则存在有.而由可得,从而有.反之则不一定成立,可能相交,平行或异面.所以是的充分不必要条件,故选A
2、(2020年高考浙江)已知空间中不过同一点的三条直线l,m,n.“l ,m,n共面”是“l ,m,n两两相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】B
【解析】依题意是空间不过同一点的三条直线,
当在同一平面时,可能,故不能得出两两相交.
当两两相交时,设,根据公理可知确定一个平面,而,根据公理可知,直线即,所以在同一平面.
综上所述,“在同一平面”是“两两相交”的必要不充分条件.
故选:B
3、(2020届山东省滨州市三校高三上学期联考)设,为两个平面,则的充要条件是( )
A.内有无数条直线与平行 B.,平行与同一个平面
C.内有两条相交直线与内两条相交直线平行 D.,垂直与同一个平面
【答案】C
【解析】
对于A,内有无数条直线与平行,可得与相交或或平行;
对于B,,平行于同一条直线,可得与相交或或平行;
对于C,内有两条相交直线与内两条相交直线平行,可得α∥β;
对于D,,垂直与同一个平面,可得与相交或或平行.
故选:C.
4、(2020届浙江省嘉兴市3月模拟)已知,是两条不同的直线,是平面,且,则( )
A.若,则 B.若,则
C.若,则 D.若,则
【答案】D
【解析】
A选项 有可能线在面内的情形,错误;
B选项中l与m还可以相交或异面,错误;
C选项中不满足线面垂直的判定定理,错误,
D选项中由线面垂直的性质定理可知正确.
故选:D
5、(2020·浙江高三)已知α,β是两个相交平面,其中l⊂α,则(  )
A.β内一定能找到与l平行的直线
B.β内一定能找到与l垂直的直线
C.若β内有一条直线与l平行,则该直线与α平行
D.若β内有无数条直线与l垂直,则β与α垂直
【答案】B
【解析】
由α,β是两个相交平面,其中l⊂α,知:
在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;
在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;
在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;
在D中,β内有无数条直线与l垂直,则β与α不一定垂直,故D错误.
故选:B.
6、(2019年高考全国Ⅱ卷理数)设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行
C.α,β平行于同一条直线 D.α,β垂直于同一平面
【答案】B
【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B.
7、(2020届浙江省高中发展共同体高三上期末)如果用表示不同直线,表示不同平面,下列叙述正确的是( )
A.若,,则 B.若,,,则
C.若,,则 D.若,,则
【答案】D
【解析】
选项A中还有直线n在平面内的情况,故A不正确,
选项B中再加上两条直线相交的条件可以得到两个平面平行,故B不正确,
选项C中还有相交,故C不正确,
故选:D.
8、(2020届北京市陈经纶中学高三上学期8月开学数学试题)已知平面,是内不同于的直线,那么下列命题中错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
【答案】D
【解析】选项:由线面平行的性质可知正确.
选项:由线面平行的判定可知正确.
选项:由线面垂直的性质可知正确.
选项:因为一条直线垂直于平面内的一条直线不能推出直线垂直于平面,故错误.
故选:
9、(2020届北京市陈经纶中学高三上学期10月月考)如图,点P在正方体的面对角线上运动,则下列四个结论:
三棱锥的体积不变;
平面;

平面平面.
其中正确的结论的个数是  
A.1个 B.2个 C.3个 D.4个
【答案】C
【解析】
对于,由题意知,从而平面,
故BC上任意一点到平面的距离均相等,
所以以P为顶点,平面为底面,则三棱锥的体积不变,故正确;
对于,连接,,且相等,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档