下载此文档

人教版高中数学3.1 函数的三要素(精讲)(提升版)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载13页1.30 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学3.1 函数的三要素(精讲)(提升版)(解析版).docx
文档介绍:
3.1 函数的三要素(精讲)(提升版)
思维导图
考点呈现
例题剖析
考点一 定义域
【例1-1】(2022·湖北省通山县第一中学)函数定义域为(       )
A. B. C. D.
【答案】C
【解析】因为,所以,解得且,
所以函数的定义域为;故选:C
【例1-2】(1)(2022·新疆昌吉)已知f(x)的定义域是,则函数的定义域是(       )
A. B.
C. D.
(2)(2022·吉林·长春市第二中学高一期末)已知函数的定义域为,则函数的定义域为(       )
A. B. C. D.
【答案】(1)B(2)B
【解析】(1)因f(x)的定义域是,则在中有:,解得且,
所以函数的定义域是.答案:B
(2)由题意得:,解得:,由,解得:,
故函数的定义域是,故选:B.
【例1-3】(2022·全国·高三专题练****若函数的定义域为,则实数的取值范围是(       )
A. B. C. D.
【答案】B
【解析】因为,的定义域为,所以首先满足恒成立,,
再者满足,变形得到
,最终得到.故选:B.
【一隅三反】
1.(2022·四川·遂宁中学)若函数的定义域为,则函数的定义域为(  )
A. B. C. D.
【答案】C
【解析】因为函数的定义域为,所以函数满足,
即,,函数的定义域为,故选:C.
2.(2022·全国·高三专题练****已知函数的定义域为,则的取值范围是(       )
A. B. C. D.
【答案】C
【解析】由题意得:在上恒成立.
即时,恒成立,符合题意,
时,只需,解得:,综上:,故选:C.
3.(2022·陕西·西安市阎良区关山中学)函数的定义域为______.
【答案】
【解析】由题意得,解得,
令k=-1,解得,
令k=0,解得,
令k=1,解得,
综上,定义域为.
故答案为:
考点二 解析式
【例2-1】(2022·全国·高三专题练****多选)已知函数是一次函数,满足,则的解析式可能为(       )
A. B.
C. D.
【答案】AD
【解析】设,则,则,所以,得或,所以或.故选:AD.
【例2-2】(1)(2022·全国·高三专题练****已知函数,则的解析式为(       )
A. B.
C. D.
(2)(2022·全国·高三专题练****已知函数在上是单调函数,且满足对任意,都有,则的值是(       )
A. B. C. D.
【答案】(1)A(2)C
【解析】(1)令,则 ,所以,所以,
故选:A.
(2)在上是单调函数,可令,,
,解得:,,.故选:C.
【例2-3】(2022·全国·高三专题练****若,则等于(       )
A. B. C. D.
【答案】C
【解析】,化简变形可得,令,
所以,,所以,故选:C.
【例2-4】(2022·全国·高三专题练****已知函数的定义域为,且,则
A. B.
C. D.
【答案】B
【解析】∵,①,∴,②,
由①②联立解得.故选:B.
【一隅三反】
1.(2022·全国·高三专题练****已知函数f(x2+1)=x4,则函数y=f(x)的解析式是(  )
A. B.
C. D.
【答案】B
【解析】,且,所以.
故选:B
2.(2022·全国·高三专题练****已知是一次函数,且,则的解析式为
A.或 B.或
C.或 D.或
【答案】A
【解析】设,则,
即对任意的恒成立,所以,解得:或,
所以的解析式为或,故选:A
3.(2022·全国·高三专题练****已知函数满足,则的解析式为(       )
A. B.
C. D.
【答案】A
【解析】函数满足,
设,则,由知,故原函数可转化为,,即的解析式为.故选:A.
4.(2022·全国·高三专题练****已知满足,则等于(       )
A. B.
C. D.
【答案】D
【解析】把①中的换成,得②
由①②得.故选:D
考点三 值域
【例3-1】(2022·全国·高三专题练****已知函数的值域是(   )
A. B. C. D.
【答案】B
【解析】因为,所以所以函数的值域是
故选:B
【例3-2】(2022·全国·江西科技学院附属中学)函数的值域(       )
A. B.
C. D.
【答案】D
【解析】依题意,,其中的值域为,故函数的值
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档