下载此文档

人教版高中数学第03讲 函数及其表示 (讲)解析版.docx


高中 高二 上学期 数学 人教版

1340阅读234下载6页49 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第03讲 函数及其表示 (讲)解析版.docx
文档介绍:
第03讲 函数及其表示
【学科素养】数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析
【课标解读】
1.了解函数的概念,会求简单的函数的定义域和值域.
2.理解函数的三种表示法:解析法、图象法和列表法.
3.了解简单的分段函数,会用分段函数解决简单的问题.
【备考策略】
1.理解函数的概念、函数的定义域、值域、函数的表示方法;
2.以分段函数为背景考查函数的相关性质问题.
【核心知识】
知识点1.函数的概念
一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f ,在集合B中都有唯一确定的数y和它对应,那么就称f :A→B为从集合A到集合B的一个函数,记作y=f (x),x∈A.
知识点2.函数的定义域、值域
(1)在函数y=f (x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x)|x∈A}叫做函数的值域.
(2)如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.
知识点3.函数的表示方法
(1)用数学表达式表示两个变量之间的对应关系的方法叫做解析法.
(2)用图象表示两个变量之间的对应关系的方法叫做图象法.
(3)列出表格表示两个变量之间的对应关系的方法叫做列表法.
知识点4.函数的三要素
(1)函数的三要素:定义域、对应关系、值域.
(2)两个函数相等:如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.
知识点5.分段函数
(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
知识点6.复合函数
一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))的内层函数.
【高频考点】
高频考点一 求函数的定义域
例1.(2020·北京卷)函数的定义域是____________.
【答案】(0,+∞) 
【解析】要使函数有意义,需满足即x>0,所以函数f (x)的定义域为(0,+∞).
【方法技巧】
1.已知函数的具体解析式求定义域的方法
(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.
(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.
2.抽象函数的定义域的求法
(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.
(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.
【举一反三】(2021·安徽省巢湖市四中模拟)函数y=+log2(ta
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档