下载此文档

人教版高中数学第5章 §5.2 平面向量基本定理及坐标表示.docx


高中 高二 上学期 数学 人教版

1340阅读234下载18页433 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5章 §5.2 平面向量基本定理及坐标表示.docx
文档介绍:
§5.2 平面向量基本定理及坐标表示
考试要求 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.
3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.
知识梳理
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.
2.平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.
3.平面向量的坐标运算
(1)向量加法、减法、数乘运算及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),||=.
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),其中b≠0,则a∥b⇔x1y2-x2y1=0.
常用结论
已知P为线段AB的中点,若A(x1,y1),B(x2,y2),则点P的坐标为;已知△ABC的顶点A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标为.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内的任意两个向量都可以作为一个基底.( × )
(2)设{a,b}是平面内的一个基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( √ )
(3)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可以表示成=.( × )
(4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )
教材改编题
1.(多选)下列各组向量中,可以作为基底的是(  )
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,3),e2=
答案 BD
2.若P1(1,3),P2(4,0),且P是线段P1P2的一个三等分点(靠近点P1),则点P的坐标为(  )
A.(2,2) B.(3,-1)
C.(2,2)或(3,-1) D.(2,2)或(3,1)
答案 A
解析 设P(x,y),由题意知=,
∴(x-1,y-3)=(4-1,0-3)=(1,-1),
即∴
3.已知向量a=(x,1),b=(2,x-1),若(2a-b)∥a,则x为________.
答案 2或-1
解析 2a-b=(2x-2,3-x),
∵(2a-b)∥a,
∴2x-2=x(3-x),
即x2-x-2=0,解得x=2或x=-1.
题型一 平面向量基本定理的应用
例1 (1)在△ABC中,AD为BC边上的中线,E为AD的中点,则等于(  )
A.- B.-
C.+ D.+
答案 A
(2)如图,已知平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°,且||=||=1,||=2.若=λ+μ(λ,μ∈R),则λ+μ=______.
答案 6
解析 方法一 如图,作平行四边形OB1CA1,
则=+,
因为与的夹角为120°,与的夹角为30°,
所以∠B1OC=90°.
在Rt△OB1C中,∠OCB1=30°,||=2,
所以||=2,||=4,
所以||=||=4,
所以=4+2,
所以λ=4,μ=2,
所以λ+μ=6.
方法二 以O为原点,建立如图所示的平面直角坐标系,
则A(1,0),B,C(3,).
由=λ+μ,
得解得
所以λ+μ=6.
教师备选
1.(2022·山东省实验中学等四校联考)如图,在Rt△ABC中,∠ABC=,AC=2AB,∠BAC的平分线交
△ABC的外接圆于点D,设=a,=b,则向量等于(  )
A.a+b B.a+b
C.a+b D.a+b
答案 C
解析 设圆的半径为r,
在Rt△ABC中,∠ABC=,AC=2AB,
所以∠BAC=,∠ACB=,
又∠BAC的平分线交△ABC的外接圆于点D,
所以∠ACB=∠BAD=∠CAD=,
则根据圆的性质得BD=AB,
又因为在Rt△ABC中,AB=AC=r=OD,
所以四边形ABDO为菱形,
所以=+=a+b.
2.(2022·苏州质检
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档