下载此文档

人教高中数学第20讲 独立性检验与条件概率(教师版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载51页2.32 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第20讲 独立性检验与条件概率(教师版).docx
文档介绍:
第20讲 独立性检验与条件概率
真题展示
2022新高考一卷第20题
一医疗团队为研究某地的一种地方性疾病与当地居民的卫生****惯(卫生****惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好
良好
病例组
40
60
对照组
10
90
(1)能否有的把握认为患该疾病群体与未患该疾病群体的卫生****惯有差异?
(2)从该地的人群中任选一人,表示事件“选到的人卫生****惯不够良好”, 表示事件“选到的人患有该疾病”, 与的比值是卫生****惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出,的估计值,并利用(ⅰ)的结果给出的估计值.
附:.
0.050
0.010
0.001
3.841
6.635
10.828
【思路分析】(1)补充列联表,根据表中数据计算,对照附表得出结论.
(2)根据条件概率的定义与运算性质,证明即可;
(ⅱ)利用调查数据和对立事件的概率公式,计算即可.
【解析】(1)补充列联表为:
不够良好
良好
合计
病例组
40
60
100
对照组
10
90
100
合计
50
150
200
计算,
所以有的把握认为患该疾病群体与未患该疾病群体的卫生****惯有差异.
(2)证明:

(ⅱ)利用调查数据,,,,,所以.
【试题评价】本题考查了独立性检验的应用,也考查了条件概率的应用,是中档题.
知识要点整理
知识点一 分类变量
为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示.
知识点二 2×2列联表
1.2×2列联表给出了成对分类变量数据的交叉分类频数.
2.定义一对分类变量X和Y,我们整理数据如下表所示:
X
Y
合计
Y=0
Y=1
X=0
a
b
a+b
X=1
c
d
c+d
合计
a+c
b+d
n=a+b+c+d
像这种形式的数据统计表称为2×2列联表.
知识点三 独立性检验
1.定义:利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验,读作“卡方独立性检验”.简称独立性检验.
2.χ2=,其中n=a+b+c+d.
3.独立性检验解决实际问题的主要环节
(1)提出零假设H0:X和Y相互独立,并给出在问题中的解释.
(2)根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值xα比较.
(3)根据检验规则得出推断结论.
(4)在X和Y不独立的情况下,根据需要,通过比较相应的频率,分析X和Y间的影响规律.
知识点四 条件概率的概念
一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.
思考 P(A|B),P(B),P(AB)间存在怎样的等量关系?
答案 P(A|B)=,其中P(B)>0.
知识点五  概率乘法公式
对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B|A)为概率的乘法公式.
知识点六 条件概率的性质
设P(A)>0,则
(1)P(Ω|A)=1.
(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
(3)设和B互为对立事件,则P(|A)=1-P(B|A).
知识点七 全概率公式
一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=(Ai)P(B|Ai),我们称该公式为全概率公式.
*知识点八 贝叶斯公式
设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)=
三年真题
1.甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数
未准点班次数
A
240
20
B
210
30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
0.100
0.050
0.010
2.706
3.841
6.63
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档